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Statistical Modeling 
 
 
 

 
 

1. How do we represent               ? 
 

2. How do we learn               from data? 
 

3. How do we predict, e.g. compute                      ? 
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RGB image with L pixels Labeling of L pixels 

background 



Graphical Models 
 Compact representation of large distributions 
 Graph encodes probabilistic dependencies 

 

Ex: Pairwise model 
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Only                           parameters! 
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 A graphical model defines family of distributions 

Complexity of Graphical Models 
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Higher-order model 
4-neighbor 

pairwise model 



Are richer models more accurate? 
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Model Complexity 

Error 
Model 
error 

Inference 
error 

Total 
error 



Thesis Statement 
 Advocate a “bottom-up” approach to 

approximate inference & learning 
 Start with simple, cheap approximation 
 Improve through additional computation 

7 



The “Bottom-up” approach 
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Model Complexity 

Error 
Algorithm A 

Computational Limit 



The “Bottom-up” approach 
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Model Complexity 

Error 

Algorithm B 

Computational Limit 



The “Bottom-up” approach 
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Model Complexity 

Error 

Algorithm C 

Computational Limit 



Overview of Thesis 
1. Max Likelihood Learning 
 Computation-limited, approximate learning 

 

2. Computing Marginal Probabilities 
 Region choice for Generalized Belief Propagation 

 

3. Most Probable (MAP) Configuration 
 Cutting-plane algorithm for weighted matchings 
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Outline of this Talk 
1. Max Likelihood Learning 
 Sources of error in likelihood-based learning 
 Computation-accuracy trade-offs in approximate learning 

 

2. Computing Marginal Probabilities 
 Review of Belief Propagation (BP) & Generalized BP 
 Choosing Regions via Cycle Bases  

 

3. Summary 
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Parameter Estimation & Prediction 
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Parameter Estimation & Prediction 
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Max Likelihood Estimation 
 

 Given a model,                                                    , 
 

     find 
 
     where, 
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vector of empirical marginals: 



Surrogate Likelihood [Wainwright ‘06] 

 Approximate   is          with               , 
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Surrogate Likelihood [Wainwright ‘06] 

 Approximate   is          with               , 
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,…, 

Low iBound High iBound 



Surrogate Likelihood [Wainwright ‘06] 

 Approximate   is          with               , 
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,…, 

Low iBound High iBound 

When does better inference mean better learning? 



Errors in Approximate Learning 
1. Model Error 
 Error in approximation to true (unknown) distribution 

 

2. Estimation Error 
 Error due to use of finite sample  

 

3. Optimization Error 
 Gap between true and surrogate likelihood functions 

 

20 



Errors in Approximate Learning 
1. Model Error 
 data sampled as                         , where  
 fit model with  
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e.g. pairwise 
models 



Errors in Approximate Learning 
2. Estimation Error 
 optimize empirical (not expected) risk  
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,…, 

small N large N 



Errors in Approximate Learning 
3. Optimization Error 
 optimize a surrogate likelihood 
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surrogate A (poor) surrogate B (better) 



Empirical Study (I) – Estimation 

 Study estimation error (MSE) as we vary: 
 Optimization Error: inference procedures 
 Estimation Error: data set size 
 Model Error: mismatch between      and   
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Experimental Setup 
 Create L statistically identifiable models 
 Sample                          and                                 for 

 
 
 

 Sample data sets of size N = {100,…,10000} 
 

 Find                                   
 Using different approximate inference algorithms 
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Grid Experiments 
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WMB2 

WMB4 

WMB8 



Bias–Variance Trade-off 
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= + 



Model Error Experiments 
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where 

Generate Estimate 

where 



Model Error Experiments 
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Increasing amount of mis-specification 

N=100 N=10000 



Empirical Study (II) – Prediction 
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Test Point: 

Estimate: 

Hamming Loss: 

Typically don’t know     , compute 



MRF De-Noising Experiments 
 USPS digits data (1100, 16x16 pixel grayscale images) 

 Convert to binary and flip pixels with probability p 
 

 Assume a 4-neighbor model: 
 
 

 

 Compute both Errest and Errpred  
 Errest computed wrt              (using exact inference) 
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MRF De-Noising Experiments 
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Estimation Error Prediction Error 

WMB2 WMB4 WMB8 



Foreground/Background Segmentation 
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Input, x Output, y 



Foreground/Background Segmentation 
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Input, x Output, y 



Conditional Random Field Model 
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y1 

y2 

yL 

y3 

y4 

y5 

Unary Features: 

Pairwise Features: 



Quantitative Results 

36 

Prediction Error 



Qualitative Results 
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WMB2 

WMB4 

WMB8 



Summary of Experimental Study 
 If data set is small use a lower iBound method 
 Trade smaller variance for increased bias 

 
 Higher iBound does 
 not yield better 
     predictions if model  
     error is dominant 
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Model Error 
Dominant 



The Dream Scenario… 
 Given data set N and time budget T, choose the 

model and algorithm that minimize test error 
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(For a fixed N) 



Outline of this Talk 
1. Max Likelihood Learning 
 Sources of error in likelihood-based learning 
 Computation-accuracy trade-offs in approximate learning 

 

2. Computing Marginal Probabilities 
 Review of Belief Propagation (BP) & Generalized BP 
 Choosing Regions via Cycle Bases  

 

3. Summary 
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Computing Marginals 
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? 

? 

…want to compute: 

After learning 

y4 y5 

y7 

y8 

y1 
y2 

y9 

y10 

y11 

y3 
y6 



Variational Perspective [Wainwright & Jordan ‘08] 

 Convert from a summation task… 
 

 
 …to an optimization task 
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Set of valid probability 
distributions 

Entropy of 
distribution b(y) 



Variational Approximations 
 GBP introduces two approximations 
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1)  Locally consistent beliefs 2)  Approximate Entropy 

Marginal Entropy on Region R, where  



Which Regions do we choose? 
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Complexity: 
exp(w*) exp(2) 

Accuracy: low exact high 

exp(|region|) 

Bethe / BP Kikuchi / GBP Exact 



Region choice is important! 
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Error in marginal estimates Error in log Z estimates 

Same complexity; very different accuracies! 



Existing Guidance on Region Choice 
 Choose Regions so that: 

 

                   exact when p(y) nearly uniform 

 
                   exact when p(y) nearly deterministic 

 
 All fixed points are uniform when p(y) is uniform 
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[Welling, Minka, Teh ‘05] 

[Yedidia, Freeman, Weiss ’02] 

[Yedidia, Freeman, Weiss ’02] 

[Pakzad & Anantharam ‘05] 



 Consider a pairwise model 
 

Tree-Robustness [Gelfand & Welling ‘12] 
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 Consider a pairwise model 
 Let             be a tree in G 

 

Tree-Robustness [Gelfand & Welling ‘12] 
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 Consider a pairwise model 
 Let             be a tree in G 

 

Tree-Robustness [Gelfand & Welling ‘12] 
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 Assume uniform 
off-tree factors: 
 



 Consider a pairwise model 
 Let             be a tree in G 

 

Tree-Robustness [Gelfand & Welling ‘12] 
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y3 
y6 

 Assume uniform 
off-tree factors: 
 
 

                  is exact 
on            and all 
such trees in G! 



Is Tree Robustness Desirable? 
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Less Tree Robust Tree Robust 

Accuracy degrades as Regions becomes less Tree Robust! 



Bottom-Up Region Selection 
 Selecting Regions ≡ Finding Cycle Bases in G 
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y1 y2 

y3 y4 

y1 y2 

y3 y4 

pairwise 
model graph, G 



 Selecting Regions ≡ Finding Cycle Bases in G 
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y1 y2 

y3 y4 

y1 y2 

y3 y4 

pairwise 
model graph, G 

y1 y2 

y3 y4 

C1 

Bottom-Up Region Selection 



 Selecting Regions ≡ Finding Cycle Bases in G 
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y1 y2 

y3 y4 

pairwise 
model graph, G 

y1 y2 
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y4 

C1 C2 

Bottom-Up Region Selection 



 Selecting Regions ≡ Finding Cycle Bases in G 
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y1 y2 

y3 y4 

y1 y2 

y3 y4 

pairwise 
model graph, G 

y1 y2 

y3 y4 

y1 y2 

y4 

y1 y2 

y3 

C1 C2 C3 

Bottom-Up Region Selection 

Collection of outer regions 



Identifying Tree-Robust Regions 
 Selecting TR Regions ≡ Finding TR Cycle Basis 
 Faces of a planar graph: 

 
 
 

 ‘Star’ Construction 
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Experimental Results 
 Grids with long range interactions 
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Algorithms 
1. GBP with Tree-Robust Core 
2. GBP with ‘ear’ construction 
3. Loopy BP 
4. Iterative Join Graph Prop. 

(IJGP) w/ iBound = 4 



Experimental Results 
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Error in marginal estimates Error in log Z estimates 

Increasing # of non-planar edges 



Outline of this Talk 
1. Max Likelihood Learning 
 Sources of error in likelihood-based learning 
 Computation-accuracy trade-offs in approximate learning 

 

2. Computing Marginal Probabilities 
 Review of Belief Propagation (BP) & Generalized BP 
 Choosing Regions via Cycle Bases  

 

3. Summary 
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Summary 
 Continued need for better inference methods 
 Advocate a “bottom-up” approach to inference 

 

 Computation-Accuracy Trade-offs in Learning 
 Small N => Low computation inference 
 Better inference does not mean better predictions 

 

 Proposed tree-robustness for choosing regions 
 Connected finding regions to finding cycle bases 
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Belief Propagation (BP) [Pearl ‘88] 
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Belief Propagation (BP) [Pearl ‘88] 
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Belief Propagation (BP) [Pearl ‘88] 
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y1 y2 y1 y3 y1 y4 

y1 y2 y3 y4 

Iterate until beliefs are consistent ! 



Generalized BP [Yedidia, Freeman, Weiss ‘00] 

65 



Generalized BP [Yedidia, Freeman, Weiss ‘00] 

66 



Generalized BP [Yedidia, Freeman, Weiss ‘00] 
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Generalized BP [Yedidia, Freeman, Weiss ‘00] 
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Domain Size Experiments 
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Domain Size Experiments 
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Domain Size Experiments 
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Weighted Matching Problem 
 Given graph G=(V,E) with edge weights  
 find a matching of total maximum weight 
Matching: subset of E, such that no 2 edges share a vertex 
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Not a Matching Max Weight Matching Valid Matching 



Solving Weighted Matching Problems 
Many efficient algorithms exist 

 
 

 
 

 Recent results using Belief Propagation 
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Edmonds 1965 O(|V|2 |E|) 

Lawler 1973 O(|V|3) 

Gabow 1974 O(|V|3) 

Galil, Micali, Gabow 1986 O(|V||E| log|V|)  

Gabow 1990 O(|V|(|E|+|V|log|V|)) 

Bayati, Shah, Sharma  [bipartite graphs] 2005 O(c |V|3) 

Sanghavi,Malioutov, Willsky  [general graphs] 2007 O(c wmax|V|3) 
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Solving Weighted Matching Problems 

match-IP 

match-LP MAP-match 

Matching problem as 
Integer Program (IP) 

Linear Programming (LP) 
Relaxation of match-IP 

match-IP as a MAP 
inference problem 



Matching as an Integer Program (IP) 
 Given graph G=(V,E) with edge weights 
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Vertex Incidence 
Constraint 

Integrality 
Constraint 

Together define matching polytope,  



Linear Programming (LP) Relaxation 
 Given graph G=(V,E) with edge weights 
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Vertex Incidence 
Constraint 

Relaxed 
Integrality 
Constraint 

Define a relaxed matching polytope,  



Matching as MAP Inference 
 Associate a variable with each edge 

 
 

  where 
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Vertex incidence 
constraints 

Edge weights 



Relationship between polytopes  
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Feasible Integral 
Vertices / Matchings 

Feasible Fractional 
Vertices / Matchings 



Relationship between polytopes  
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match-IP 

match-LP MAP-match 

If integral solution to match-LP, 
then max-product BP on MAP-

match is provably exact 
bipartite graphs [Bayati, Shah, Sharma ‘05] 
general graphs [Sanghavi, Malioutov, Willsky ‘07] 

≡ BP 



What if match-LP is loose? 

80 

Solution of 
match-LP is 
fractional  



What if match-LP is loose? 
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Remove fractional 
solution by adding 

constraints 



What if match-LP is loose? 
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Solution of match-LP 
with additional cutting 

plane constraint 



Edmonds and Blossom Constraints 
Matching polytope is also given by [Edmonds 65]: 

All odd-sized 
subsets of V Edges w/ both ends in S  
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Edmonds and Blossom Constraints 
Matching polytope is also given by [Edmonds 65]: 
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Subset of Size 3 

Constraint: 

Removes: 
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Solving Weighted Matching Problems 

match-IP 

match-LP MAP-match 

Bayati, Shah, Sharma  [bipartite graphs] 2005 O(c |V|3) 

Sanghavi,Malioutov, Willsky  [general graphs] 2007 O(c wmax|V|3) 

Matching problem as 
Integer Program (IP) 

Linear Programming (LP) 
Relaxation of match-IP 

match-IP as a MAP 
inference problem 



Overview of Results 

match-IP match-LP match-LPt 
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MAP-match match-MAP-LP match-MAP-LPt 

Tightened Relaxation 
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