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Statistical Modeling 
 
 
 

 
 

1. How do we represent               ? 
 

2. How do we learn               from data? 
 

3. How do we predict, e.g. compute                      ? 
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RGB image with L pixels Labeling of L pixels 

background 



Graphical Models 
 Compact representation of large distributions 
 Graph encodes probabilistic dependencies 

 

Ex: Pairwise model 
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Only                           parameters! 
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 A graphical model defines family of distributions 

Complexity of Graphical Models 
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Higher-order model 
4-neighbor 

pairwise model 



Are richer models more accurate? 
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Model Complexity 

Error 
Model 
error 

Inference 
error 

Total 
error 



Thesis Statement 
 Advocate a “bottom-up” approach to 

approximate inference & learning 
 Start with simple, cheap approximation 
 Improve through additional computation 
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The “Bottom-up” approach 
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Model Complexity 

Error 
Algorithm A 

Computational Limit 



The “Bottom-up” approach 
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Model Complexity 

Error 

Algorithm B 

Computational Limit 



The “Bottom-up” approach 
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Model Complexity 

Error 

Algorithm C 

Computational Limit 



Overview of Thesis 
1. Max Likelihood Learning 
 Computation-limited, approximate learning 

 

2. Computing Marginal Probabilities 
 Region choice for Generalized Belief Propagation 

 

3. Most Probable (MAP) Configuration 
 Cutting-plane algorithm for weighted matchings 
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Outline of this Talk 
1. Max Likelihood Learning 
 Sources of error in likelihood-based learning 
 Computation-accuracy trade-offs in approximate learning 

 

2. Computing Marginal Probabilities 
 Review of Belief Propagation (BP) & Generalized BP 
 Choosing Regions via Cycle Bases  

 

3. Summary 
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Parameter Estimation & Prediction 
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Parameter Estimation & Prediction 
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Max Likelihood Estimation 
 

 Given a model,                                                    , 
 

     find 
 
     where, 
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vector of empirical marginals: 



Surrogate Likelihood [Wainwright ‘06] 

 Approximate   is          with               , 
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Surrogate Likelihood [Wainwright ‘06] 

 Approximate   is          with               , 
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,…, 

Low iBound High iBound 



Surrogate Likelihood [Wainwright ‘06] 

 Approximate   is          with               , 
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,…, 

Low iBound High iBound 

When does better inference mean better learning? 



Errors in Approximate Learning 
1. Model Error 
 Error in approximation to true (unknown) distribution 

 

2. Estimation Error 
 Error due to use of finite sample  

 

3. Optimization Error 
 Gap between true and surrogate likelihood functions 
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Errors in Approximate Learning 
1. Model Error 
 data sampled as                         , where  
 fit model with  
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e.g. pairwise 
models 



Errors in Approximate Learning 
2. Estimation Error 
 optimize empirical (not expected) risk  
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,…, 

small N large N 



Errors in Approximate Learning 
3. Optimization Error 
 optimize a surrogate likelihood 
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surrogate A (poor) surrogate B (better) 



Empirical Study (I) – Estimation 

 Study estimation error (MSE) as we vary: 
 Optimization Error: inference procedures 
 Estimation Error: data set size 
 Model Error: mismatch between      and   
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Experimental Setup 
 Create L statistically identifiable models 
 Sample                          and                                 for 

 
 
 

 Sample data sets of size N = {100,…,10000} 
 

 Find                                   
 Using different approximate inference algorithms 
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Grid Experiments 
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WMB2 

WMB4 

WMB8 



Bias–Variance Trade-off 
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Model Error Experiments 
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where 

Generate Estimate 

where 



Model Error Experiments 
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Increasing amount of mis-specification 

N=100 N=10000 



Empirical Study (II) – Prediction 
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Test Point: 

Estimate: 

Hamming Loss: 

Typically don’t know     , compute 



MRF De-Noising Experiments 
 USPS digits data (1100, 16x16 pixel grayscale images) 

 Convert to binary and flip pixels with probability p 
 

 Assume a 4-neighbor model: 
 
 

 

 Compute both Errest and Errpred  
 Errest computed wrt              (using exact inference) 
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MRF De-Noising Experiments 
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Estimation Error Prediction Error 

WMB2 WMB4 WMB8 



Foreground/Background Segmentation 
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Input, x Output, y 



Foreground/Background Segmentation 
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Input, x Output, y 



Conditional Random Field Model 
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y1 

y2 

yL 

y3 

y4 

y5 

Unary Features: 

Pairwise Features: 



Quantitative Results 
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Prediction Error 



Qualitative Results 
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WMB2 

WMB4 

WMB8 



Summary of Experimental Study 
 If data set is small use a lower iBound method 
 Trade smaller variance for increased bias 

 
 Higher iBound does 
 not yield better 
     predictions if model  
     error is dominant 
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Model Error 
Dominant 



The Dream Scenario… 
 Given data set N and time budget T, choose the 

model and algorithm that minimize test error 
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(For a fixed N) 



Outline of this Talk 
1. Max Likelihood Learning 
 Sources of error in likelihood-based learning 
 Computation-accuracy trade-offs in approximate learning 

 

2. Computing Marginal Probabilities 
 Review of Belief Propagation (BP) & Generalized BP 
 Choosing Regions via Cycle Bases  

 

3. Summary 
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Computing Marginals 
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? 

? 

…want to compute: 

After learning 

y4 y5 

y7 

y8 
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Variational Perspective [Wainwright & Jordan ‘08] 

 Convert from a summation task… 
 

 
 …to an optimization task 
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Set of valid probability 
distributions 

Entropy of 
distribution b(y) 



Variational Approximations 
 GBP introduces two approximations 
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1)  Locally consistent beliefs 2)  Approximate Entropy 

Marginal Entropy on Region R, where  



Which Regions do we choose? 
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Complexity: 
exp(w*) exp(2) 

Accuracy: low exact high 

exp(|region|) 

Bethe / BP Kikuchi / GBP Exact 



Region choice is important! 
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Error in marginal estimates Error in log Z estimates 

Same complexity; very different accuracies! 



Existing Guidance on Region Choice 
 Choose Regions so that: 

 

                   exact when p(y) nearly uniform 

 
                   exact when p(y) nearly deterministic 

 
 All fixed points are uniform when p(y) is uniform 
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[Welling, Minka, Teh ‘05] 

[Yedidia, Freeman, Weiss ’02] 

[Yedidia, Freeman, Weiss ’02] 

[Pakzad & Anantharam ‘05] 



 Consider a pairwise model 
 

Tree-Robustness [Gelfand & Welling ‘12] 

47 

y4 y5 

y7 

y8 

y1 
y2 

y9 

y10 

y11 

y3 
y6 



 Consider a pairwise model 
 Let             be a tree in G 

 

Tree-Robustness [Gelfand & Welling ‘12] 
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 Consider a pairwise model 
 Let             be a tree in G 

 

Tree-Robustness [Gelfand & Welling ‘12] 

49 

y4 y5 

y7 

y8 

y1 
y2 

y9 

y10 

y11 

y3 
y6 

 Assume uniform 
off-tree factors: 
 



 Consider a pairwise model 
 Let             be a tree in G 

 

Tree-Robustness [Gelfand & Welling ‘12] 
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y4 y5 

y7 
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y6 

 Assume uniform 
off-tree factors: 
 
 

                  is exact 
on            and all 
such trees in G! 



Is Tree Robustness Desirable? 
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Less Tree Robust Tree Robust 

Accuracy degrades as Regions becomes less Tree Robust! 



Bottom-Up Region Selection 
 Selecting Regions ≡ Finding Cycle Bases in G 
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y1 y2 

y3 y4 

y1 y2 

y3 y4 

pairwise 
model graph, G 



 Selecting Regions ≡ Finding Cycle Bases in G 

53 

y1 y2 

y3 y4 

y1 y2 

y3 y4 

pairwise 
model graph, G 

y1 y2 

y3 y4 

C1 

Bottom-Up Region Selection 



 Selecting Regions ≡ Finding Cycle Bases in G 
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Bottom-Up Region Selection 



 Selecting Regions ≡ Finding Cycle Bases in G 
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C1 C2 C3 

Bottom-Up Region Selection 

Collection of outer regions 



Identifying Tree-Robust Regions 
 Selecting TR Regions ≡ Finding TR Cycle Basis 
 Faces of a planar graph: 

 
 
 

 ‘Star’ Construction 
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Experimental Results 
 Grids with long range interactions 
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Algorithms 
1. GBP with Tree-Robust Core 
2. GBP with ‘ear’ construction 
3. Loopy BP 
4. Iterative Join Graph Prop. 

(IJGP) w/ iBound = 4 



Experimental Results 
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Error in marginal estimates Error in log Z estimates 

Increasing # of non-planar edges 



Outline of this Talk 
1. Max Likelihood Learning 
 Sources of error in likelihood-based learning 
 Computation-accuracy trade-offs in approximate learning 

 

2. Computing Marginal Probabilities 
 Review of Belief Propagation (BP) & Generalized BP 
 Choosing Regions via Cycle Bases  

 

3. Summary 
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Summary 
 Continued need for better inference methods 
 Advocate a “bottom-up” approach to inference 

 

 Computation-Accuracy Trade-offs in Learning 
 Small N => Low computation inference 
 Better inference does not mean better predictions 

 

 Proposed tree-robustness for choosing regions 
 Connected finding regions to finding cycle bases 
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Belief Propagation (BP) [Pearl ‘88] 

62 

y1 y2 y1 y3 y1 y4 

y1 y2 y3 y4 



Belief Propagation (BP) [Pearl ‘88] 
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Belief Propagation (BP) [Pearl ‘88] 
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y1 y2 y1 y3 y1 y4 

y1 y2 y3 y4 

Iterate until beliefs are consistent ! 



Generalized BP [Yedidia, Freeman, Weiss ‘00] 
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Generalized BP [Yedidia, Freeman, Weiss ‘00] 
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Generalized BP [Yedidia, Freeman, Weiss ‘00] 
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Generalized BP [Yedidia, Freeman, Weiss ‘00] 
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Domain Size Experiments 
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Domain Size Experiments 
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Domain Size Experiments 
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Weighted Matching Problem 
 Given graph G=(V,E) with edge weights  
 find a matching of total maximum weight 
Matching: subset of E, such that no 2 edges share a vertex 
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Not a Matching Max Weight Matching Valid Matching 



Solving Weighted Matching Problems 
Many efficient algorithms exist 

 
 

 
 

 Recent results using Belief Propagation 
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Edmonds 1965 O(|V|2 |E|) 

Lawler 1973 O(|V|3) 

Gabow 1974 O(|V|3) 

Galil, Micali, Gabow 1986 O(|V||E| log|V|)  

Gabow 1990 O(|V|(|E|+|V|log|V|)) 

Bayati, Shah, Sharma  [bipartite graphs] 2005 O(c |V|3) 

Sanghavi,Malioutov, Willsky  [general graphs] 2007 O(c wmax|V|3) 
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Solving Weighted Matching Problems 

match-IP 

match-LP MAP-match 

Matching problem as 
Integer Program (IP) 

Linear Programming (LP) 
Relaxation of match-IP 

match-IP as a MAP 
inference problem 



Matching as an Integer Program (IP) 
 Given graph G=(V,E) with edge weights 
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Vertex Incidence 
Constraint 

Integrality 
Constraint 

Together define matching polytope,  



Linear Programming (LP) Relaxation 
 Given graph G=(V,E) with edge weights 
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Vertex Incidence 
Constraint 

Relaxed 
Integrality 
Constraint 

Define a relaxed matching polytope,  



Matching as MAP Inference 
 Associate a variable with each edge 

 
 

  where 
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Vertex incidence 
constraints 

Edge weights 



Relationship between polytopes  
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Feasible Integral 
Vertices / Matchings 

Feasible Fractional 
Vertices / Matchings 



Relationship between polytopes  
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match-IP 

match-LP MAP-match 

If integral solution to match-LP, 
then max-product BP on MAP-

match is provably exact 
bipartite graphs [Bayati, Shah, Sharma ‘05] 
general graphs [Sanghavi, Malioutov, Willsky ‘07] 

≡ BP 



What if match-LP is loose? 

80 

Solution of 
match-LP is 
fractional  



What if match-LP is loose? 
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Remove fractional 
solution by adding 

constraints 



What if match-LP is loose? 
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Solution of match-LP 
with additional cutting 

plane constraint 



Edmonds and Blossom Constraints 
Matching polytope is also given by [Edmonds 65]: 

All odd-sized 
subsets of V Edges w/ both ends in S  
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Edmonds and Blossom Constraints 
Matching polytope is also given by [Edmonds 65]: 
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Subset of Size 3 

Constraint: 

Removes: 
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Solving Weighted Matching Problems 

match-IP 

match-LP MAP-match 

Bayati, Shah, Sharma  [bipartite graphs] 2005 O(c |V|3) 

Sanghavi,Malioutov, Willsky  [general graphs] 2007 O(c wmax|V|3) 

Matching problem as 
Integer Program (IP) 

Linear Programming (LP) 
Relaxation of match-IP 

match-IP as a MAP 
inference problem 



Overview of Results 

match-IP match-LP match-LPt 
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MAP-match match-MAP-LP match-MAP-LPt 

Tightened Relaxation 
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