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Abstract

Max-product ‘belief propagation’ (BP) is a popular distributed heuristic for find-
ing the Maximum A Posteriori (MAP) assignment in a joint probability distribu-
tion represented by a Graphical Model (GM). It was recently shown that BP con-
verges to the correct MAP assignment for a class of loopy GMs with the following
common feature: the Linear Programming (LP) relaxation to the MAP problem is
tight (has no integrality gap). Unfortunately, tightness of the LP relaxation does
not, in general, guarantee convergence and correctness of the BP algorithm. The
failure of BP in such cases motivates reverse engineering a solution – namely,
given a tight LP, can we design a ‘good’ BP algorithm.
In this paper, we design a BP algorithm for the Maximum Weight Matching
(MWM) problem over general graphs. We prove that the algorithm converges
to the correct optimum if the respective LP relaxation, which may include in-
equalities associated with non-intersecting odd-sized cycles, is tight. The most
significant part of our approach is the introduction of a novel graph transformation
designed to force convergence of BP. Our theoretical result suggests an efficient
BP-based heuristic for the MWM problem, which consists of making sequential,
“cutting plane”, modifications to the underlying GM. Our experiments show that
this heuristic performs as well as traditional cutting-plane algorithms using LP
solvers on MWM problems.

1 Introduction

Graphical Models (GMs) provide a useful representation for reasoning in a range of scientific fields
[1, 2, 3, 4]. Such models use a graph structure to encode the joint probability distribution, where
vertices correspond to random variables and edges (or lack of thereof) specify conditional depen-
dencies. An important inference task in many applications involving GMs is to find the most likely
assignment to the variables in a GM - the maximum a posteriori (MAP) configuration. Belief Prop-
agation (BP) is a popular algorithm for approximately solving the MAP inference problem. BP is
an iterative, message passing algorithm that is exact on tree structured GMs. However, BP often
shows remarkably strong heuristic performance beyond trees, i.e. on GMs with loops. Distributed
implementation, associated ease of programming and strong parallelization potential are among the
main reasons for the popularity of the BP algorithm, e.g., see the parallel implementations of [5, 6].

The convergence and correctness of BP was recently established for a certain class of loopy GM
formulations of several classic combinatorial optimization problems, including matchings [7, 8, 9],
perfect matchings [10], independent sets [11] and network flows [12]. The important common

∗Also at Theoretical Division of Los Alamos National Lab.

1



feature of these instances is that BP converges to a correct MAP assignment when the Linear Pro-
gramming (LP) relaxation of the MAP inference problem is tight, i.e., it shows no integrality gap.
While this demonstrates that LP tightness is necessary for the convergence and correctness of BP,
it is unfortunately not sufficient in general. In other words, BP may not work even when the corre-
sponding LP relaxation to the MAP inference problem is tight. This motivates a quest for improving
BP-based MAP solvers so that they work when the LP is tight.

In this paper, we consider a specific class of GMs corresponding to the Maximum Weight Matching
(MWM) problem and study if BP can be used as an iterative, message passing-based LP solver
when the MWM LP (relaxation) is tight. It was recently shown [15] that a MWM can be found in
polynomial time by solving a carefully chosen sequence of LP relaxations, where the sequence of
LPs are formed by adding and removing sets of so-called “blossom” inequalities [13] to the base
LP relaxation. Utilizing successive LP relaxations to solve the MWM problem is an example of
the popular cutting plane method for solving combinatorial optimization problems [14]. While the
approach in [15] is remarkable in that one needs only a polynomial number of “cut” inequalities,
it unfortunately requires solving an emerging sequence of LPs via traditional, centralized methods
(e.g., ellipsoid, interior-point or simplex) that may not be practical for large-scale problems. This
motivates our search for an efficient and distributed BP-based LP solver for this class of problems.

Our work builds upon that of Sanghavi, Malioutov and Willsky [8], who studied BP for the GM
formulation of the MWM problem on an arbitrary graph. The authors showed that max-product BP
converges to the correct, MAP solution if the base LP relaxation with no blossom - referred to herein
as MWM-LP - is tight. Unfortunately, the tightness is not guaranteed in general, and the convergence
and correctness for max-product BP do not readily extend to a GM with blossom constraints.

To resolve this issue, we propose a novel GM formulation of the MWM problem and show that max-
product BP on this new GM converges to the MWM assignment as long as the MWM-LP relaxation
with blossom constraints is tight. The only restriction placed on our GM construction is that the
set of blossom constraints added to the base MWM-LP be non-intersecting (in edges). Our GM
construction is motivated by the so-called ‘degree-two’ (DT) condition, which requires that every
variable in the GM be associated to at most two factor functions. The DT condition is necessary
for analysis of BP using the computational tree technique, developed and advanced in [7, 8, 12, 16,
18, 19]. Note, that the DT condition is not satisfied by the standard MWM GM formulation, and
hence, we design a new GM that satisfies the DT condition via a clever graphical transformation -
namely, collapsing odd-sized cycles and defining new weights on the contracted graph. Importantly,
the MAP assignments of the two GMs are in one-to-one correspondence guaranteeing that a solution
to the original problem can be recovered.

Our theoretical result suggests a cutting-plane approach to the MWM problem, where BP is used
as the LP solver. In particular, we examine the BP solution to identify odd-sized cycle constraints
- “cuts” - to add to the MWM-LP relaxation; then construct a new GM using our graphical trans-
formation, run BP and repeat. We evaluate this heuristic empirically and show that its performance
is close to a traditional cutting-plane approach employing an LP solver rather than BP. Finally, we
note that the DT condition may neither be sufficient nor necessary for BP to work. It was necessary,
however, to provide theoretical guarantees for the special class of GMs considered. To our knowl-
edge, our result is the first to suggest how to “fix” BP via a graph transformation so that it works
properly, i.e., recovers the desired LP solution. We believe that our success in crafting a graphical
transformation will offer useful insight into the design and analysis of BP algorithms for a wider
class of problems.

Organization. In Section 2, we introduce a standard GM formulation of the MWM problem as well
as the corresponding BP and LP. In Section 3, we introduce our new GM and describe performance
guarantees of the respective BP algorithm. In Section 4, we describe a cutting-plane(-like) method
using BP for the MWM problem and show its empirical performance for random MWM instances.
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2 Preliminaries

2.1 Graphical Model for Maximum Weight Matchings

A joint distribution of n (discrete) random variables Z = [Zi] ∈ Ωn is called a Graphical Model
(GM) if it factorizes as follows: for z = [zi] ∈ Ωn,

Pr[Z = z] ∝
∏

α∈F
ψα(zα), (1)

where F is a collection of subsets of Ω, zα = [zi : i ∈ α ⊂ Ω] is a subset of variables, and ψα is
some (given) non-negative function. The function ψα is called a factor (variable) function if |α| ≥ 2
(|α| = 1). For variable functions ψα with α = {i}, we simply write ψα = ψi. One calls z a valid
assignment if Pr[Z = z] > 0. The MAP assignment z∗ is defined as

z∗ = arg max
z∈Ωn

Pr[Z = z].

Let us introduce the Maximum Weight Matching (MWM) problem and its related GM. Suppose we
are given an undirected graph G = (V,E) with weights {we : e ∈ E} assigned to its edges. A
matching is a set of edges without common vertices. The weight of a matching is the sum of cor-
responding edge weights. The MWM problem consists of finding a matching of maximum weight.
Associate a binary random variable with each edge X = [Xe] ∈ {0, 1}|E| and consider the proba-
bility distribution: for x = [xe] ∈ {0, 1}|E|,

Pr[X = x] ∝
∏
e∈E

ewexe

∏
i∈V

ψi(x)
∏
C∈C

ψC(x), (2)

where

ψi(x) =

{
1 if

∑
e∈δ(i) xe ≤ 1

0 otherwise
and ψC(x) =

{
1 if

∑
e∈E(C) xe ≤

|C|−1
2

0 otherwise
.

Here C is a set of odd-sized cycles C ⊂ 2V , δ(i) = {(i, j) ∈ E} and E(C) = {(i, j) ∈ E :
i, j ∈ C}. Throughout the manuscript, we assume that cycles are non-intersecting in edges, i.e.,
E(C1) ∩ E(C2) = ∅ for all C1, C2 ∈ C. It is easy to see that a MAP assignment x∗ for the GM (2)
induces a MWM in G. We also assume that the MAP assignment is unique.

2.2 Belief Propagation and Linear Programming for Maximum Weight Matchings

In this section, we introduce max-product Belief Propagation (BP) and the Linear Programming
(LP) relaxation to computing the MAP assignment in (2). We first describe the BP algorithm for the
general GM (1), then tailor the algorithm to the MWM GM (2). The BP algorithm updates the set of
2|Ω| messages {mt

α→i(zi),m
t
i→α(zi) : zi ∈ Ω} between every variable i and its associated factors

α ∈ Fi = {α ∈ F : i ∈ α, |α| ≥ 2} using the following update rules:

mt+1
α→i(zi) =

∑
z′:z′i=zi

ψα(z
′)
∏
j∈α\i

mt
j→α(z

′
j) and mt+1

i→α(zi) = ψi(zi)
∏

α′∈Fi\α

mt
α′→i(zi).

Here t denotes time and initially m0
α→i(·) = m0

i→α(·) = 1. Given a set of messages
{mi→α(·),mα→i(·))}, the BP (max-marginal) beliefs {ni(zi)} are defined as follows:

ni(zi) = ψi(zi)
∏

α∈Fi

mα→i(zi).

For the GM (2), we let nte(·) to denote the BP belief on edge e ∈ E at time t. The algorithm outputs
the MAP estimate at time t, xBP(t) = [xBP

e (t)] ∈ [0, ?, 1]
|E|, using the using the beliefs and the rule:

xBP
e (t) =


1 if nte(0) < nte(1)

? if ntij(0) = nte(1)

0 if nte(0) > nte(1)

.

The LP relaxation to the MAP problem for the GM (2) is:

C-LP : max
∑
e∈E

wexe

s.t.
∑
e∈δ(i)

xe ≤ 1, ∀i ∈ V,
∑

e∈E(C)

xe ≤
|C| − 1

2
, ∀C ∈ C, xe ∈ [0, 1].
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Observe that if the solution xC-LP to C-LP is integral, i.e., xC-LP ∈ {0, 1}|E|, then it is a MAP
assignment, i.e., xC-LP = x∗. Sanghavi, Malioutov and Willsky [8] proved the following theorem
connecting the performance of BP and C-LP in a special case:
Theorem 2.1. If C = ∅ and the solution of C-LP is integral and unique, then xBP(t) under the GM
(2) converges to the MWM assignment x∗.

Adding small random component to every weight guarantees the uniqueness condition required by
Theorem 2.1. A natural hope is that Theorem 2.1 extends to a non-empty C since adding more cycles
can help to reduce the integrality gap of C-LP. However, the theorem does not hold when C 6= ∅. For
example, BP does not converge for a triangle graph with edge weights {2, 1, 1} and C consisting of
the only cycle. This is true even though the solution to its C-LP is unique and integral.

3 A Graphical Transformation for Convergent & Correct BP

The loss of convergence and correctness of BP when the MWM LP is tight (and unique) but C 6= ∅
motivates the work in this section. We resolve the issue by designing a new GM, equivalent to the
original GM, such that when BP is run on this new GM it converges to the MAP/MWM assignment
whenever the LP relaxation is tight and unique - even if C 6= ∅. The new GM is defined on an
auxiliary graph G′ = (V ′, E′) with new weights {w′e : e ∈ E′}, as follows:

V ′ = V ∪ {iC : C ∈ C}, E′ = E ∪ {(iC , j) : j ∈ V (C), C ∈ C} \ {e : e ∈ ∪C∈CE(C)}

w′e =

{
1
2

∑
e′∈E(C)(−1)

dC(j,e′)we′ if e = (iC , j) for some C ∈ C

we otherwise
.

Here dC(j, e) is the graph distance of j and e in cycle C = (j1, j2, . . . , jk), e.g., if e = (j2, j3),
then dC(j1, e) = 1.

Figure 1: Example of original graph G (left) and new graph G′ (right) after collapsing cycle C =
(1, 2, 3, 4, 5). In the new graph G′, edge weight w1C = 1/2(w12 − w23 + w34 − w45 + w15).

Associate a binary variable with each new edge and consider the new probability distribution on
y = [ye : e ∈ E′] ∈ {0, 1}|E′|:

Pr[Y = y] ∝
∏
e∈E′

ew
′
eye
∏
i∈V

ψi(y)
∏
C∈C

ψC(y), (3)

where

ψi(y) =

1 if
∑

e∈δ(i)
ye ≤ 1

0 otherwise
ψC(y) =


0 if

∑
e∈δ(iC)

ye > |C| − 1

0 if
∑

j∈V (C)

(−1)dC(j,e)yiC ,j /∈ {0, 2} for some e ∈ E(C)

1 otherwise

.

It is not hard to check that the number of operations required to update messages at each round of
BP under the above GM is O(|V ||E|), as messages updates involving factor ψC require solving a
MWM problem on a simple cycle – which can be done efficiently via dynamic programming in time
O(|C|) – and the summation of the numbers of edges of non-intersecting cycles is at most |E|. We
are now ready to state the main result of this paper.
Theorem 3.1. If the solution of C-LP is integral and unique, then the BP-MAP estimate yBP(t)
under the GM (3) converges to the corresponding MAP assignment y∗. Furthermore, the MWM
assignment x∗ is reconstructible from y∗ as:

x∗e =

{
1
2

∑
j∈V (C)(−1)dC(j,e)y∗iC ,j if e ∈

⋃
C∈CE(C)

y∗e otherwise
. (4)
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The proof of Theorem 3.1 is provided in the following sections. We also establish the convergence
time of the BP algorithm under the GM (3) (see Lemma 3.2). We stress that the new GM (3) is
designed so that each variable is associated to at most two factor nodes. We call this condition,
which did not hold for the original GM (2), the ‘degree-two’ (DT) condition. The DT condition
will play a critical role in the proof of Theorem 3.1. We further remark that even under the DT
condition and given tightness/uniqueness of the LP, proving correctness and convergence of BP is
still highly non trivial. In our case, it requires careful study of the computation tree induced by BP
with appropriate truncations at its leaves.

3.1 Main Lemma for Proof of Theorem 3.1

Let us introduce the following auxiliary LP over the new graph and weights.

C-LP′ : max
∑
e∈E′

w′eye

s.t.
∑
e∈δ(i)

ye ≤ 1, ∀i ∈ V, ye ∈ [0, 1], ∀e ∈ E′, (5)

∑
j∈V (C)

(−1)dC(j,e)yiC ,j ∈ [0, 2], ∀e ∈ E(C),
∑

e∈δ(iC)

ye ≤ |C| − 1, ∀C ∈ C. (6)

Consider the following one-to-one linear mapping between x = [xe : e ∈ E] and y = [ye : e ∈ E′]:

ye =

{∑
e′∈E(C)∩δ(i) xe′ if e = (i, iC)

xe otherwise
xe =

{
1
2

∑
j∈V (C)(−1)

dC(j,e)yiC ,j if e ∈
⋃
C∈CE(C)

ye otherwise
.

Under the mapping, one can check that C-LP = C-LP′ and if the solution xC-LP of C-LP is unique
and integral, the solution yC-LP′ of C-LP′ is as well, i.e., yC-LP′ = y∗. Hence, (4) in Theorem 3.1
follows. Furthermore, since the solution y∗ = [y∗e ] to C-LP′ is unique and integral, there exists c > 0
such that

c = inf
y 6=y∗:y is feasible to C-LP′

w′ · (y∗ − y)

|y∗ − y|
,

wherew′ = [w′e]. Using this notation, we establish the following lemma characterizing performance
of the max-product BP over the new GM (3). Theorem 3.1 follows from this lemma directly.

Lemma 3.2. If the solution yC-LP′ of C-LP′ is integral and unique, i.e., yC-LP′ = y∗, then

• If y∗e = 1, nte[1] > nte[0] for all t > 6w′max
c

+ 6,

• If y∗e = 0, nte[1] < nte[0] for all t > 6w′max
c

+ 6,

where nte[·] denotes the BP belief of edge e at time t under the GM (3) and w′max = maxe∈E′ |w′e|.

3.2 Proof of Lemma 3.2

This section provides the complete proof of Lemma 3.2. We focus here on the case of y∗e = 1, while
translation of the result to the opposite case of y∗e = 0 is straightforward. To derive a contradiction,
assume that nte[1] ≤ nte[0] and construct a tree-structured GM Te(t) of depth t + 1, also known as
the computational tree, using the following scheme:

1. Add a copy of Ye ∈ {0, 1} as the (root) variable (with variable function ew
′
eYe ).

2. Repeat the following t times for each leaf variable Ye on the current tree-structured GM.

2-1. For each i ∈ V such that e ∈ δ(i) and ψi is not associated to Ye of the current model, add ψi
as a factor (function) with copies of {Ye′ ∈ {0, 1} : e′ ∈ δ(i) \ e} as child variables (with
corresponding variable functions, i.e., {ew

′
e′Ye′ }).

2-2. For each C ∈ C such that e ∈ δ(iC) and ψC is not associated to Ye of the current model, add
ψC as a factor (function) with copies of {Ye′ ∈ {0, 1} : e′ ∈ δ(iC)\e} as child variables (with
corresponding variable functions, i.e., {ew

′
e′Ye′ }).

5



It is known from [17] that there exists a MAP configuration yTMAP on Te(t) with yTMAP
e = 0 at the

root variable. Now we construct a new assignment yNEW on the computational tree Te(t) as follows.

1. Initially, set yNEW ← yTMAP and e is the root of the tree.

2. yNEW ← FLIPe(y
NEW).

3. For each child factor ψ, which is equal to ψi (i.e., e ∈ δ(i)) or ψC (i.e., e ∈ δ(iC)), associated with
e,

(a) If ψ is satisfied by yNEW and FLIPe(y
∗) (i.e., ψ(yNEW) = ψ(FLIPe(y

∗)) = 1), then do
nothing.

(b) Else if there exists a e’s child e′ through factor ψ such that yNEW
e′ 6= y∗e′ and ψ is satisfied by

FLIPe′(y
NEW) and FLIPe′(FLIPe(y

∗)), then go to the step 2 with e← e′.
(c) Otherwise, report ERROR.

To aid readers understanding, we provide a figure describing an example of the above construction
in our technical report [21]. In the construction, FLIPe(y) is the 0-1 vector made by flipping (i.e.,
changing from 0 to 1 or 1 to 0) the e’s position in y. We note that there exists exactly one child
factor ψ in step 3 and we only choose one child e′ in step (b) (even though there are many possible
candidates). Due to this reason, flip operations induce a path structure P in tree Te(t).1 Now we
state the following key lemma for the above construction of yNEW.

Lemma 3.3. ERROR is never reported in the construction described above.

Proof. The case when ψ = ψi at the step 3 is easy, and we only provide the proof for the case when
ψ = ψC . We also assume that yNEW

e is flipped as 1 → 0 (i.e., y∗e = 0), where the proof for the
case 0 → 1 follows in a similar manner. First, one can observe that y satisfies ψC if and only if y
is the 0-1 indicator vector of a union of disjoint even paths in the cycle C. Since yNEW

e is flipped as
1→ 0, the even path including e is broken into an even (possibly, empty) path and an odd (always,
non-empty) path. We consider two cases: (a) there exists e′ within the odd path (i.e., yNEW

e′ = 1)
such that y∗e′ = 0 and flipping yNEW

e′ as 1→ 0 broke the odd path into two even (disjoint) paths; (b)
there exists no such e′ within the odd path.

For the first case (a), it is easy to see that we can maintain the structure of disjoint even paths in
yNEW after flipping yNEW

e′ as 1 → 0, i.e., ψ is satisfied by FLIPe′(y
NEW). For the second case (b),

we choose e′ as a neighbor of the farthest end point (from e) in the odd path, i.e., yNEW
e′ = 0 (before

flipping). Then, y∗e′ = 1 since y∗ satisfies factor ψC and induces a union of disjoint even paths in
the cycle C. Therefore, if we flip yNEW

e′ as 0→ 1, then we can still maintain the structure of disjoint
even paths in yNEW, ψ is satisfied by FLIPe′(y

NEW). The proof for the case of the ψ satisfied by
FLIPe′(FLIPe(y

∗)) is similar. This completes the proof of Lemma 3.3.

Due to how it is constructed yNEW is a valid configuration, i.e., it satisfies all the factor functions in
Te(t). Hence, it suffices to prove that w′(yNEW) > w′(yTMAP), which contradicts to the assumption
that yMAP is a MAP configuration on Te(t). To this end, for (i, j) ∈ E′, let n0→1

ij and n1→0
ij be the

number of flip operations 0 → 1 and 1 → 0 for copies of (i, j) in the step 2 of the construction of
Te(t). Then, one derives

w′(yNEW) = w′(yTMAP) + w′ · n0→1 − w′ · n1→0,

where n0→1 = [n0→1
ij ] and n1→0 = [n1→0

ij ]. We consider two cases: (i) the path P does not arrive
at a leave variable of Te(t), and (ii) otherwise. Note that the case (i) is possible only when the
condition in the step (a) holds during the construction of yNEW.

Case (i). In this case, we define y†ij := y∗ij + ε(n1→0
ij −n0→1

ij ), and establish the following lemma.

Lemma 3.4. y† is feasible to C-LP′ for small enough ε > 0.

Proof. We have to show that y† satisfies (5) and (6). Here, we prove that y† satisfies (6) for small
enough ε > 0, and the proof for (5) can be argued in a similar manner. To this end, for given C ∈ C,

1P may not have an alternating structure since both yNEW
e and its child yNEW

e′ can be flipped in a same way.
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we consider the following polytope PC :∑
j∈V (C)

yiC ,j ≤ |C| − 1, yiC ,j ∈ [0, 1], ∀j ∈ C,
∑

j∈V (C)

(−1)dC(j,e)yiC ,j ∈ [0, 2], ∀e ∈ E(C).

We have to show that y†C = [ye : e ∈ δ(iC)] is within the polytope. It is easy to see that the
condition of the step (a) never holds if ψ = ψC in the step 3. For the i-th copy of ψC in P ∩ Te(t),
we set y∗C(i) = FLIPe′(FLIPe(y

∗
C)) in the step (b), where y∗C(i) ∈ PC . Since the path P does not

hit a leave variable of Te(t), we have

1

N

∑N

i=1
y∗C(i) = y∗C +

1

N

(
n1→0
C − n0→1

C

)
,

where N is the number of copies of ψC in P ∩ Te(t). Furthermore, 1
N

∑N
i=1 y

∗
C(i) ∈ PC due to

y∗C(i) ∈ PC . Therefore, y†C ∈ PC if ε ≤ 1/N . This completes the proof of Lemma 3.4.

The above lemma with w′(y∗) > w′(y†) (due to the uniqueness of y∗) implies that w′ · n0→1 >
w′ · n1→0, which leads to w′(yNEW) > w′(yTMAP).

Case (ii). We consider the case when only one end of P hits a leave variable Ye of Te(t),
where the proof of the other case follows in a similar manner. In this case, we define
y‡ij := y∗ij + ε(m1→0

ij − m0→1
ij ), where m1→0 = [m1→0

ij ] and m0→1 = [m0→1
ij ] is con-

structed as follows:

1. Initially, set m1→0,m0→1 by n1→0, n0→1.

2. If yNEW
e is flipped as 1 → 0 and it is associated to a cycle parent factor ψC for some C ∈ C, then decrease

m1→0
e by 1 and

2-1 If the parent yNEW
e′ is flipped from 1→ 0, then decrease m1→0

e′ by 1.
2-2 Else if there exists a ‘brother’ edge e′′ ∈ δ(iC) of e such that y∗e′′ = 1 and ψC is satisfied by

FLIPe′′(FLIPe′(y
∗)), then increase m0→1

e′′ by 1.
2-3 Otherwise, report ERROR.

3. If yNEW
e is flipped as 1 → 0 and it is associated to a vertex parent factor ψi for some i ∈ V , then decrease

m1→0
e by 1.

4. If yNEW
e is flipped as 0 → 1 and it is associated to a vertex parent factor ψi for some i ∈ V , then decrease

m0→1
e ,m1→0

e′ by 1, where e′ ∈ δ(i) is the ‘parent’ edge of e, and

4-1 If the parent yNEW
e′ is associated to a cycle parent factor ψC ,

4-1-1 If the grad-parent yNEW
e′′ is flipped from 1→ 0, then decrease m1→0

e′′ by 1.
4-1-2 Else if there exists a ‘brother’ edge e′′′ ∈ δ(iC) of e′ such that y∗e′′′ = 1 and ψC is satisfied by

FLIPe′′′(FLIPe′′(y
∗)), then increase m0→1

e′′′ by 1.
4-1-3 Otherwise, report ERROR.

4-2 Otherwise, do nothing.

We establish the following lemmas.
Lemma 3.5. ERROR is never reported in the above construction.
Lemma 3.6. y‡ is feasible to C-LP′ for small enough ε > 0.

Proofs of Lemma 3.5 and Lemma 3.6 are analogous to those of Lemma 3.3 and Lemma 3.4, respec-
tively. From Lemma 3.6, we have

c ≤ w′ · (y∗ − y‡)
|y∗ − y‡| ≤

ε
(
w′(m0→1 −m1→0)

)
ε(t− 3)

≤
ε
(
w′(n0→1 − n1→0) + 3w′max

)
ε(t− 3)

,

where |y∗ − y‡| ≥ ε(t− 3) follows from the fact that P hits a leave variable of Te(t) and there are
at most three increases or decreases in m0→1 and m1→0 in the above construction. Hence,

w′(n0→1 − n1→0) ≥ c(t− 3)− 3w′max > 0 if t >
3w′max

c
+ 3,
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which implies w′(yNEW) > w′(yTMAP). If both ends of P hit leave variables of Te(t), we need
t >

6w′max

c + 6. This completes the proof of Lemma 3.2.

4 Cutting-Plane Algorithm using Belief Propagation

In the previous section we established that BP on a carefully designed GM using non-intersecting
odd-sized cycles solves the MWM problem when the corresponding MWM-LP relaxation is tight.
However, finding a collection of odd-sized cycles to ensure tightness of the MWM-LP is a challeng-
ing task. In this section, we provide a heuristic algorithm which we call CP-BP (cutting-plane using
BP) for this task. It consists of making sequential, “cutting plane”, modifications to the underlying
LP (and corresponding GM) using the output of the BP algorithm in the previous step. CP-BP is
defined as follows:

1. Initialize C = ∅.
2. Run BP on the GM in (3) for T iterations

3. For each edge e ∈ E, set ye =


1 if nTe [1] > nTe [0] and nT−1

e [1] > nT−1
e [0]

0 if nTe [1] < nTe [0] and nT−1
e [1] < nT−1

e [0]

1/2 otherwise
.

4. Compute x = [xe] using y = [ye] as per (4), and terminate if x /∈ {0, 1/2, 1}|E|.
5. If there is no edge e with xe = 1/2, return x. Otherwise, add a non-intersecting odd-sized cycle of

edges {e : xe = 1/2} to C and go to step 2; or terminate if no such cycle exists.

In the above procedure, BP can be replaced by an LP solver to directly obtain x in step 4. This
results in a traditional cutting-plane LP (CP-LP) method for the MWM problem [20]. The primary
reason why we design CP-BP to terminate when x /∈ {0, 1/2, 1}|E| is because the solution x of
C-LP is always half integral 2. Note that x /∈ {0, 1/2, 1}|E| occurs when BP fails to find the solution
to the current MWM-LP.

We compare CP-BP and CP-LP in order to gauge the effectiveness of BP as an LP solver for MWM
problems. We conducted experiments on two types of synthetically generated problems: 1) Sparse
Graph instances; and 2) Triangulation instances. The sparse graph instances were generated by
forming a complete graph on |V | = {50, 100} nodes and independently eliminating edges with
probability p = {0.5, 0.9}. Integral weights, drawn uniformly in [1, 220], are assigned to the re-
maining edges. The triangulation instances were generated by randomly placing |V | = {100, 200}
points in the 220 × 220 square and computing a Delaunay triangulation on this set of points. Edge
weights were set to the rounded Euclidean distance between two points. A set of 100 instances were
generated for each setting of |V | and CP-BP was run for T = 100 iterations.

The results are summarized in Table 1 and show that: 1) CP-BP is almost as good as CP-LP for
solving the MWM problem; and 2) our graphical transformation allows BP to solve significantly
more MWM problems than are solvable by BP run on the ‘bare’ LP without odd-sized cycles.

50 % sparse graphs 90 % sparse graphs
|V | / |E| # CP-BP # Tight LPs # CP-LP |V | / |E| # CP-BP # Tight LPs # CP-LP
50 / 490 94 % 65 % 98 % 50 / 121 90 % 59 % 91 %
100 / 1963 92 % 48 % 95 % 100 / 476 63 % 50 % 63 %

Triangulation, |V | = 100, |E| = 285 Triangulation, |V | = 200, |E| = 583
Algorithm # Correct / # Converged Time (sec) # Correct / # Converged Time (sec)
CP-BP 33 / 36 0.2 [0.0,0.4] 11 / 12 0.9 [0.2,2.5]
CP-LP 34 / 100 0.1 [0.0,0.3] 15 / 100 0.8 [0.3,1.6]

Table 1: Evaluation of CP-BP and CP-LP on random MWM instances. Columns # CP-BP and # CP-LP indicate the percentage of instances

in which the cutting plane methods found a MWM. The column # Tight LPs indicates the percentage for which the initial MWM-LP is tight

(i.e. C = ∅). # Correct and # Converged indicate the number of correct matchings and number of instances in which CP-BP converged upon

termination, but we failed to find a non-intersecting odd-sized cycle. The Time column indicates the mean [min,max] time.

2A proof of 1
2

-integrality, which we did not find in the literature, is presented in our technical report [21].
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