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Abstract

We study iterative randomized greedy algorithms for gener-
ating (elimination) orderings with small induced width and
state space size - two parameters known to bound the com-
plexity of inference in graphical models. We propose and im-
plement the Iterative Greedy Variable Ordering (IGVO) algo-
rithm, a new variant within this algorithm class. An empirical
evaluation using different ranking functions and conditions of
randomness, demonstrates that IGVO finds significantly bet-
ter orderings than standard greedy ordering implementations
when evaluated within an anytime framework. Additional or-
der of magnitude improvements are demonstrated on a multi-
core system, thus further expanding the set of solvable graph-
ical models. The experiments also confirm the superiority of
the MinFill heuristic within the iterative scheme.

Introduction

Having good (i.e., small tree-width) variable orderings in
graphical models is known to be of central significance.
While it was thought initially that this will impact only ex-

act algorithms, many approximation schemes such as gen-""

eralized belief propagation, mini-bucket elimination and

AND/OR sampling (Yedidia, Freeman, and Weiss 2005;

Dechter and Rish 2002; Gogate and Dechter 2008) are
highly dependent on the availability of good orderings.
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Kask, Dechter, and Gelfand 2010). However, since infer-
ence is exponential in the tree-width, a small reduction in
tree-width (say by even by 1 or 2) can amount to one or two
orders of magnitude reduction in inference time. Thus, huge
computational gains are also possible by simply finding im-
proved variable orderings.

An approach that has proven successful in practice is iter-
atively executing a greedy ordering algorithm with random
tie-breaking and keeping track of the best ordering gener-
ated (Fishelson and Geiger 2003). This scheme is appealing
because itis anytime, easy to employ and easily paraltklize
While empirical evaluations of greedy ordering algorithms
have been conducted (Clautiaux et al. 2004; Kjaerulff 1992;
Larranaga et al. 1997; Bodlaender 2009), iterative schemes
have not been systematically studied.

In this paper we study iterative randomized greedy
schemes for finding variable orderings that can minimize
both tree-width and state-space measures. We focus on the
following ideas:

Implementing greedy variable-ordering schemes in a
highly efficient manner.

2. Adding stochasticity to the selection process to engmira
discovery of a more diverse set of variable orderings (in

the spirit of stochastic local search).

Finding a minimal tree-width ordering is known to be 3. Aborting i ; ; :

. ) . g iterations of the greedy algorithm that yield un
NP-complete (Arnborg, Corneil, and Proskourowski 1987). ‘i : ; o
Therefore, the past two decades have seen serious ef- promising orderings (in the spirit of branch and bound).

fort devoted to developing anytime complete algorithms 4.
(Gogate and Dechter 2004) and approximation schemes, e.g. Specifically, the paper describes the development of a
(Robertson and Seymour 1983; Bodlaender 2009; 2007). highly efficient, parallel variable ordering algorithm eth-
However, the most popular and practical class of approxima- grative Greedy Variable Ordering (IGVO) algorithm - that
tions are greedy variable-ordering schemes that utilize va .4 accommodate any greedy ranking function. The IGVO
ious variable-ordering heuristics (Dechter and Meiri 1,989 algorithm also employs randomized "pooling" during vari-
Kjaerulff 1992). Greedy schemes are popular because they gpje selection (an idea from (Fishelson and Geiger 2003))
are relatively fast, leaving ample time for the exponential 5nq early termination rules to stop unpromising iterations
inference computation that follows. Indeed, mostrecentre |, 4 extensive empirical evaluation, we demonstrate an
search in probabilistic inference and optimization in grap impressive (5-10x) speedup over a standard greedy variable
ical models has focused on advancing exact and approxi- o qering implementation. We also show that IGVO finds

mate inference metlh_ods. This work has r_eiulted N SigNi-  tar petter orderings than a standard implementation. These
icant computational improvements (Darwiche 2001; Bac- gaing are attributed to a more efficient implementation, the

Exploiting parallel processing.

chus, Dalmo, and Piassi 2003; Dechter and Mateescu 2007
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»pooling scheme and, to a lesser extent, early termination. |
addition, we show that parallelization of the iterativeestie
yields linear speedup using multi-core CPUs.



Background
A graphical model R is a 4-tupleR = (X, D, F, ®) that
specifies variables, (finite) domains and functions. The ar-
guments of a function is itscope It represents the combina-
tion of all its functions:®}_, f;. For example, for Bayesian
or Markov networks, the functions are probabilities and the
combination operator is multiplication.

Theprimal graph of a graphical model associates a node
with each variable and connects any two nodes appearing
in the same scope. The set of neighborsvdh a graph
G = (V,E) is denotedNg (v) = {w € V|{v,w} € E}
and the neighbors including itself is denotedNg[v] =
Ng(v) U {v}. We assume that the reader is familiar with
graph concepts, such as cycles, chords and cliques.

DEFINITION 1. Variable ordering, Simplicial variable - An
ordering of a graphG = (V, FE) is a bijectiond : V' —
{1,2,...,n}, where|V| = n. An ordered graph is a pair
(G,d), whered = V(y,..., V() is an ordering. A vertex
v € V is calledsimplicial, if the set of its higher ordered
neighbors{w|{v,w} € E A d(w) > d(v)} forms a clique.
An elimination orderingl if perfect, if allv € V' are simpli-
cial.

Note that we often denote the nodgsby the variables
of the graphical modek. A variable orderingl induces a
sequence of supergraphs@f defined as followsGy = G,
and for alll < i < n, G; is the graph obtained fro@;_,
by adding edges so that all vertices@h = Ng, , (X;) N
{Xis1,..., X, } are pairwise connected. New edges added
during the elimination process are called fill edgds. =
E(G;) \ E(G;-1) is the set of fill edges added during step
. Note that grapl,, is chordal and the sét; is a clique.
The process of obtaining gragh; from G;_, is referred to
aseliminatingvertex X ;).

DEFINITION 2. Induced width, Treewidth - Given an or-
dered graph(G,d), the induced width ofX(;) = [Cjl.
The width of an ordering isv(d, R) = max? , |C;| — 1.
The induced width of a graphy*, is the minimal induced
width over all possible orderings. Treewidth is identical t
induced-width and we will use those terms interchangeably.

DEFINITION 3. Total State Space - Thetotal state spacef

an elimination orderd with respect to a graphical model
R is: S(d, R) = Z?:l S(X(l),Gl) Wheres(X(i),Gl-) =
HueNc,[X(i)] |D(u)] is the space needed to eliminate node
X i) from G; and D(u) is the domain of node (Kjaerulff
1992).

Greedy Variable Ordering (GVO) Algorithms

The general greedy variable ordering (GVO) scheme con-
structs an ordering as follows. A vertexis greedily se-
lected according to a heuristic ranking function. This errt

is placed into the first position of the ordering, its neigtso
are connected and it is then eliminated. Then a second ver-
tex is selected, placed into the next position of the ordgerin
and eliminated. This process is repeated until all vertices
have been eliminated. At each step, more than one vertex
may be of minimum cost under the heuristic ranking func-
tion. In such cases, the vertex to be eliminated is selected
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Figure 1. Histogram of induced width and state space size
observed over 20,000 iterations of MinFill with random tie-
breaking on problerfargeFam3-15-543511 variables).

randomly from the set of minimum cost vertices - i.e. ran-
dom tie-breaking is used.

Vertex selection is guided by a heuristic ranking function.
Using different ranking functions amounts to building éim
nation orders via different greedy algorithms. The followi
are three common ranking functions.

1. MinFill Cost - The number of fill edges added. Specifi-
cally, M F(v) = |F,|, whereF, is the set of fill edges that
would be added if variable were to be eliminated.

MinDegree (also known as Mininduced-Width) Cost -
The degree of variablein the current fill graph. Specifi-
cally, M D(v) = deqwv).

. MinComplexity Cost - The complexity of variable elim-
ination.  Specifically, M C(v) = [], e nq o d(w), Where
d(u) is the domain size ofi. This ranking function is
designed to minimize the total state space size.

2.

The Iterative GVO (IGVO) Algorithm

In this section, we describe our iterative GVO (IGVO) algo-

rithm. We begin by motivating the need for iterative random-
ized algorithms. We then give an algorithmic description of
the basic randomized GVO algorithm, which is a subroutine
of IGVO. Last, we describe the primary differences between
IGVO and existing GVO schemes. This includes a descrip-
tion and complexity analysis of two implementation details
that yield significant speedup.

Demonstrating Variability

Consider the histogram shown in Figure 1, which contains
the empirical distribution of widths over 200000 runs of
GVO using the MinFill ranking function on a particular
Markov network. Itis typical of the variability in both witt

and state-space size observed while running our greedy
scheme on instances from linkage analysis, and shows the
induced widths of the orderings found (against the left ver-
tical axis) and the (log of) the minimum and maximum state
space size for each induced width found (right vertical)axis
For most of the width values, there is a wide range of state



space sizes; moreover, there is a significant overlap betwee
state space sizes of neighboring widths. As expected we also
see strong correlation between width and state space size -
as width gets smaller, the state space size declines. This
variability encourages the use of randomness in an iterativ
search for low width and low state space variable orderings
and also demonstrates the need for early termination. The
IGVO algorithm is described next.

Algorithmic Description

The basic randomized GVO algorithm is presented in Fig-
ure 2. The algorithm utilizes any ranking functi®iC(X),

such as the min-fill, min-degree or min-complexity heuris-
tics described above. The algorithm has a totah dfera-
tions, wheren is the number of variables in the graphical
model. At each iteration a variable is selected for elim-
ination. Any simplicial variables in the graph are always
eliminated (item 2a) because their elimination does not in-
troduce any new fill edges and increase the width of an or-
dering (Robertson and Seymour 1983). If there are no sim-
plicial variables (item 2b), a pool of thevariables having

the smallest variable cost (wrt. the given ranking function
are identified. A variableX is randomly selected from this
pool with probability proportional to its cost. The variabl
selected is added to the ordering (step 4) and the graph is
updated by removing the variable and adding the necessary
fill edges (step 3).

The GVO algorithm is a subroutine in the main iterative
algorithm presented in Figure 3. The iterative algorithmsus
an objective functiorC(d, R) to compare different variable
orderings. The objective function can be either the induced
width of the ordering (i.e.C(d, R) = w(d, R)) or the to-
tal state space of the ordering (i.€2(d, R) = s(d, R)).
After every iteration, the variable ordering found is com-
pared to the best ordering found so far and the best ordering
is retained. The cost of a partial ordering is also evaluated
in every iteration of the GVO. If this cost exceeds the cur-
rent upper bound B, GVO is terminated as completing
the variable ordering will lead to an inferior one. We refer
to discontinuing the GVO in this manner Barly Termina-

Algorithm Greedy Variable Order (GVO)
Input: Graphical modeR, its primal graphG=(V,E), a rank-
ing functionV C(X), pool sizep, exponent, Objective Func

tion C'(d, R) and Upper Bound/ B
Output: A variable orderingl = (X (1), ..., X(n))-
e Initialize: Setd =0, W = V.

eFork=1,...,n, do, using filled graplds_ :
1. If: C(d,R) > UB, Terminate Early

2. Select a variablé to eliminate:
(a) If: any simplicial variables iV, pick one asX,

(b) Else: Order the variables froril” according to cost'C'.

3. Eliminate X from Gy: connect neighbors oX, removeX.
4. SetW = W\ {X}andd(k) = X.
e Return: d

Let P be a pool of they lowest cost variables. Seleat
from P with probability:
VO(X)*) Xyep VO

Figure 2: The Greedy Variable Ordering (GVO) Subroutine

Algorithm Iterative Greedy Variable Ordering (IGVO)
Input:
size p, exponente, number of threadsn, Objective Function
C(d, R) and Upper Bound/ B, timeout/# iterations.

Output: A partial variable ordedo = (X(1), ..., X(m))-

e On m threads execute :
1. Computed=GVO(R, G,V C,p,e,UB).
2. If C(d,R) < UB, setd* =dand seUB = C(d, R).

e Return: d*

Graphical modelR, a cost functionVC(X), pool

e Initialize: Let d* be the best ordering known at any point,
andUB = C(d*,r) beits cost. Let be the primal graph aR.

Figure 3: The Iterative GVO (IGVO) Algorithm

tion. Since an execution of GVO is independent of other 3. Optimizing the efficiency of GVO - A significant reduc-
tion in run-time is obtained due to the following algorith-

mic improvements.

executions (except for the early termination conditioh t
main iterative algorithm also executes multiple runs of GVO
in parallel.

Key Enhancements

The iterative GVO algorithm differs from standard GVO al-
gorithms in the following ways:

1. Randomization by pooling - Randomization is intro-
duced into the basic variable selection step. This allows
our algorithm to select variables that are non-optimal ac-
cording to the heuristic ranking function. This is similar
to the idea used in (Fishelson and Geiger 2003), but their

work is based on elimination cost only.

Early termination - Our algorithm improves upon naive
iterative greedy implementations by terminating inferior
variable orderings.

Adding fill edges to the graph has complexity of
O(deg®) because the adjacency of all pairs of neigh-
bors of X must be checked. By keeping all adjacency
lists sorted, we can reduce this@(2 - deg?), where
deg is the degree of the variable being eliminated.
When using the MinFill ranking function, the number
of fill in edges (MinFill removal cost) must be updated
every time a variable is eliminated. Rather than re-
computing the MinFill cost of all vertices, this is typi-
cally done by recomputing the MinFill cost of only the
neighbors ofX and the neighbors d¥ (X'). Updating
costs in this fashion is wasteful, since there are only 3
cases where the MinFill cost actually changes. Assum-
ing that X is being eliminated, the 3 updates are:

(a) For every variablev and u, such that(w,u) € F,



(u,X) € E, (w,X) ¢ E, subtract 1 fromu. 250
(b) For every fill edgdu, v) added, for every such that
(w,u) € E, (w,v) ¢ E, add 1 tou.
(c) For every fill edgéu, v) added, for every such that
(w,u) € E and(w,v) € E were not added, subtract
1 fromw.
The first case can be handled as fill edges are added
at no overhead. The second and third add complexity
O(nf -2 - deg) wherenf is the number of fill edges
added.
MinFill

4. Combined objectives- The algorithm can consider both MinDegree
tree-width and state space size as objectives in searching A MinComplexity -
for variable orderings that minimize both the time and 0 20 20 60 80 100 120
space of inference computations.
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5. Parallelism - The algorithm is clearly massively paral-
lel and can exploit the multi-core architecture of modern Figure 4: Cumulative plot of the best widths found by
CPUs. the different ranking functions for 24iargeFaminstances

The above enhancements were incorporated into our imple- (higher is better). Timeout 1 hoy,= 8,e = —1.

mentation of the randomized GVO algorithm with MinFill
ranking function. The complexity gains resulting from poin

[ MinFill_ T MinDeg [ MinCompl |

4 is summarized in the following theorem: _ domain sizes 2-6
. . # wins 185 3 54
Theorem 1. The complexity of GVO i®)(n(w?*+ n - log of min SS| 23.6 26.4 25.4
log(n))+ NF -w), wheren is the number of variables, is w of min SS 59 62 66
the width,/V F' is the number of fill edges. The complexity of domain sizes 2-30
standard MinFill isO(n(n + w®)). ZWins 108 7 127
. . . . . I fmnSS| 37.6 40.5 39.1
Proof. The complexity of a single iteration of GVO is ?UgO(; rm;]nss 61 64 60

O(deg®+ nf - deg+ n-log(n)), wheren -log(n) is the cost
of constructing the pool. Over iterations this is bounded . . .
by O(n(w?+ n - log(n))+ NF - w). Without pooling, the Table 1: Results when using state space size (SS) as objec-
complexity would beD (n(w?+ n)+ NF-w). In a standard tive. All values except number of wins are averaged across
MinFill algorithm, eliminating a variableX is anO(deg?) 242largeFamproblems (100,000 iterations per run).
operation, requiring enumeration of all pairs of neighbors

adding edges where necessary. It requires updating MinFill _ . .

ranking values for all neighbors and neighbors of neighbors the number of instances (out of 242) having width lower

of X, at a cost oD(deg?). Selecting a variable i (), for or equal_to the one speci.fied in the x-axis, for each r_ank-
a total single iteration cost @ (n + deg® + deg®). Overn ing fu_nctlon. Clearly MinFill oytperform_s the other rangin
iterations this is bounded b9 (n(n + w?)). O functions and returns lower-width orderings across thépro
lem set.
Experiments For lack of space we don'’t include the full set of results,

) o ) but we can state that on 186 problems MinFill is strictly bet-
We conducted an extensive empirical evaluation of the sug- ter than both other schemes. On average, the best orderings
gested scheme and its parameters. The bulk of our experi- found by MinFill have width 3 lower than MinDegree and 7
ments were performed on 24&tgeFamproblems modeling  |ower than MinComplexity (corresponding to up to 3 and 7
haplotype and linkage queries on biological pedigree data orders of magnitude better algorithmic performance). Fur-
from the domain of computational genetics. The problems thermore, on average MinFill finds the best ordering after

have between 2000 and 6000 variables with domain sizes g36 seconds, 88 seconds before MinDegree and 717 seconds
from 2-6 and induced width ranging from the teens to over pefore MinComplexity.

100.

Minimizing State Space Size. Results of using the three
Comparing Greedy Ranking Functions ranking functions with the state space objective are pevid
We first evaluated the impact of different ranking functions Irg;ﬁbslfzé.s I(g tg)e t/(\)/ﬁilgail::’ Fr:gbblg?osg?w\;elft\?v?alra%rjlt?é?:(; (:ﬁ-e

the i idth tat jecti . ; o .

on the induced width and state space objectives domains to be either 2 (2/3 of the time) or 30 (1/3 of the
Minimizing Induced Width. IGVO was run on each in- time). We thus see that MinFill performs best by far on the
stance with each ranking function for 1 hour and the best original configuration, finding the ordering with the small-
width recorded. Figure 4 shows the results in a cumula- est state space size in the vast majority of cases (185 out of
tive manner: For a given widthz{axis) the curves depict 242). However, once the domains are very uneven (bottom
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Figure 5: Magnified cumulative plot comparing various pool

sizes ¢ — —1, timeout 30 minutedargeFamproblems). Figure 6: Magnified cumulative plot comparing standard

MinFill, single-threaded IGVO, and 12-threaded IGVO on
typedproblems. Timeout 1 hour.

half of the table), MinComplexity ranking function outper-

forms MinFill in finding smallest state space size in more standard] IGVO(I) | IGVO(12)
cases (127 vs 108), while MinFill has smaller average state [instance n| iter w iter w iter w| spd]
space size. 100-18 | 7,435| 6,430 51| 26,689 48 324,664 4812.2
o 110-19 | 7,303|3,852 54 13,005 52 158,806 51 12.2
The Effect of Randomization 120-18 | 8,656|6,594 4717,604 45211,830 4412.0
Strictly greedy algorithms can get stuck in local minima, 120-25 | 9,171)3,789 57 14,576 5§176,156 5412.1
: : : e : 130-20 | 9,328| 3,167 60 12,541 58 154,647 57112.3
even with random tie-breaking. This is particularly true 130-22 | 10271/ 3747 56 13107 52 168 635 57 12.9
when few ties occur while running GVO on a problem 140-23 | 10'998 2318 61 7654 60 91576 5712.0
instance. To escape such minima, IGVO is augmented |150.02 117992636 57 8423 54 99949 53 11.9
with the option of making a greedily suboptimal choice, 170-18 | 12,186/ 2,202 59 6,913 55 82,756 5512.0
where we don't pick a variable with lowest cost, but in- 170-22 | 14,641] 2,795 58 8,147 56 97,423 54 12.0
stead choose among a pool (sige of lowest-cost vari- 190-19 | 15,433 3,044 56 6,473 54 77,287 5211.9
ables. In particular, the probability of picking variahle 190-21 | 15,125/5,284 43 9,545 42 115,048 4Q12.1

is VCO(X)/ > yep VCO(Y), wheree is a weighing con-
stant andP is the pool. In this forme = 0 yields a uniform

Table 2: Exemplary results comparing standard MinFill with
single- and 12-threaded IGVQ £ 8, ¢=—1) ontypedprob-
lems.n denotes the number of problem variables, iter is the
number of ordering iterations performed within 1 hour,
the best width found, spd the parallel speedup of IGVO(12).

distribution,e < 0 gives preference to variables with lower
cost, anc > 0 leans towards variables with higher cost.
Figure 5 contrasts a standard MinFill implementation
against IGVO with exponent=—1 and varying pool sizes,
focusing on a small part of the cumulative plot for readabil-
ity. We observe that performance improves as the pool size
increases from 1 to 4 to 8, but not much after that (if at all).
Varying the value ok does not have a major impact on
the overall solution, but we found that= —1 discovered
the best width sooner than= 0 or e = 1. For instance,

100

with p = 8, the minimum width ordering was found after 60 b standard w/ ET o i
an average of 478 seconds with= —1, compared to 888 IGVO wlo ET ——
seconds and 946 seconds éo£ 0 ande =—1, respectively. 40 k IGVO W/ ET
Comparison with Standard MinFill 20k

We furthermore conducted a comparison of IGVO against
a standard MinFill implementatidn In addition to the 242

% speedup over standard w/o ET

0
0O 10 20 30 40 50 60 70 80 90 100

YAn earlier version of our standard MinFill was used in the Instances

UAI-2010 competition with solver(s) that won first place in 4 cat-
egories, and was subsequently improved/enhanced, yielding the Figure 7: Time savings relative to standard MinFill across a

standard MinFill used in this paper. It eliminates all simplical ver-  gypset of 100argeFaminstances (20,000 iterations each).
tices as described in Figure 2 and uses random tie-breaking without



[ previous new
[ instance] n k] w space] w  space
110-21 7,675 5/ 37 16TB| 33 215GB
140-20 | 9,355 5|35 10TB| 28 4GB
180-21 | 14,157 5/ 38 9TB |31 67GB
200-18 | 15,319 5|36 19TB| 30 41GB

Table 3: Foutypedproblems that were previously infeasible
because of their space requirements, but are now solvable (
is number of problem variable,max. domain size).

problem instances used before, we also ran experiments on

82typedproblems from the domain of genetic linkage anal-
ysis as used in (Kask, Dechter, and Gelfand 2010) and on
which we will focus in the following. (Size ranges from sev-
eral thousand to more than fifteen thousand variables; time-
out was setto 1 hour.)

Figure 6 summarizes the results in the same cumulative
manner as before; it includes standard MinFill as well as
single- and 12-threaded IGVQ £8,¢=—1). Table 2 also
lists detailed results for a number of instances. Focusiag fi
on single-threaded execution, we observe the following:

e IGVO benefits from the strategy of pooling non-optimal

choices and consistently finds orderings with lower width
than standard MinFill, evidenced by the difference be-
tween the two respective curves in Figure 6 and the ex-

amples in Table 2.

Efficient data structures and implementation allow IGVO
to perform many more iterations — often more than 3 times
as many — in the same time as the standard implemen-
tation (cf. Table 2), in spite of the additional overhead
from pooling. Figure 7 provides further evidence of this

speedup, with more than 80% time savings across a subset

of 100 problem instances.

Parallelization. Table 2 and Figure 6 also include the re-
sults of running IGVO with 12 parallel threads (on dual 6-
core CPUs, i.e. 12 cores). Apart from the fact that it re-
turns further improved orderings, we see that the parallel
algorithm completes roughly 12 times as many iterations as
the single-threaded one, confirming fairly linear scalisg a
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Figure 8: Cumulative plot comparing standard MinFill,
single-threaded IGVO, and 12-threaded IGVO on protein
folding problems. Timeout 1 hour.

standard
iter w

1.72E+5 37
3.28E+5 33
4.46E+5 33
4.88E+5 32
3.82E+5 34
4.13E+5 32
1.48E+5 40
4.09E+4 59
1.63E+5 37
1.82E+5 27
1.38E+5 34
1.92E+5 33
1.07E+5 39
2.79E+5 29
2.40E+5 36

IGVO(1)
iter w

8.61E+5 37
1.53E+6 26
2.20E+6 27
2.06E+6 25
1.56E+6 31
2.38E+6 26
7.01E+5 32
1.83E+5 53
7.46E+5 32
7.57E+5 24
4.94E+5 30
6.69E+5 30
4.35E+5 34
1.17E+6 26
1.25E+6 3]

IGVO(12)
iter w

1.02E+7 31
1.82E+7 25
2.62E+7 27
2.45E+7 25
1.81E+7 30
2.87E+7 26
8.33E+6 32
2.30E+6 53
8.91E+6 37
8.99E+6 23
5.95E+6 29
7.92E+6 29
5.09E+6 34
1.41E+7 25
1.46E+7 3Q

[instance]

pdblel8
pdblgnt
pdbli24
pdb1mé6i
pdblnge
pdblgpk
pdblc3r
pdble3d
pdbleg5
pdbifnn
pdblgnl
pdb1h80Q
pdbli2m
pdbl1i7n
pdbljet

n

618
443
337
375
457
332
636
1298
609
658
866
744
919
530
457

spd|
11.8
11.9
11.9
11.9
11.5
12.1
11.9
12.5
12.0
11.9
12.0
11.9
11.7
12.0
11.7

Table 4: Exemplary results comparing standard MinFill with
single- and 12-threaded IGV®Q & 8,¢ = —1) on protein
folding problems (max. domain size= 81). n denotes the
number of problem variables, iter is the number of ordering
iterations performed within 1 houy the best width found,
spd the parallel speedup of IGVO(12).

expected. (Speedups greater than 12 can be explained by

the increasing impact of early termination as the minimum
width improves with the number of iterations.)

Early Termination. Figure 7 also shows the relative im-
pact on time of early termination. We see that it gives a
significant speedup (between 20 and 40%) when applied to
standard MinFill. In case of IGVO, however, which already
incorporates a host of other optimizations and extensibns,
only provides a small additional benefit — about 5% on aver-
age.

pooling. However, updating each vertex tak¥gleg®) time as op-
posed to thé@(nf - deg) of the optimized variant. In addition, the
standard implementation is run iteratively and employs the early
termination criteria.

Pushing the Boundaries of Feasibility

Table 3 lists four problem instances whose massive memory
requirements of many terabytes made solving them previ-
ously impossible, even for powerful schemes utilizing exte
nal memory (Kask, Dechter, and Gelfand 2010). Running
IGVO(12) for one hour, however, yielded good orderings
that allow for solving these instances with mere gigabytes
of hard disk space, a significant improvement.

Protein Folding Problems

We conducted another set of experiments on 138 protein
folding / side-chain prediction problems modeled as Markov
networks (Yanover and Weiss 2002) — here the max. do-



main size isk = 81, which makes finding a low-width or-
dering particularly important. Figure 8 shows a cumulative
summary plot while Table 4 presents select results in detail
Again we see that IGVO is able to perform many more it-
erations than the standard implementation and consigtentl
finds orderings with lower width, often by a considerable
margin. However, the problems are small enough (mostly
less than 1,000 variables) that the move to parallel IGVO
does not significantly improve the width of the returned or-
derings.

Conclusions

The paper studies the iterative application of stochastic
greedy ordering schemes showing that it may currently be
the primary (and perhaps the only) practical scheme for find-
ing low-treewidth decompositions. Such schemes are ap-
pealing because of their simplicity, flexibility, anytima-n
ture and trivial parallelization. Within this class of sanes,

we presented thE5VO algorithm and demonstrated its su-
periority to current variants in terms of both run-time and
finding improved orderings. We showed empirically, on
hard instances from computational biology, that IGVO's su-
periority can be attributed to: 1) Implementation efficignc

- by utilizing new data-structures and good software engi-
neering, IGVO can execute many more iterations in a given
amount of time. This is particularly impressive since the
baseline (standard) implementation is by itself highly ef-
ficient. 2) Randomization via pooling - the parametrized
scheme for introducing stochasticity to the selection pro-
cess allows IGVO to explore more diverse orderings than
standard randomized GVO. For certain parameter settings
this yields better results, despite the pooling overhegd. 3
Early termination - this was shown to have a marginal effect
on IGVO but much greater impact when the basic greedy
scheme is less efficient.

We demonstrated additional speedup and found improved
orderings when running IGVO on a multi-core machine.
This additional gain allows us to perform exact computa-
tions on quite a few problems that could not be solved even
when using external memory (i.e., solved by BEEM (Kask,
Dechter, and Gelfand 2010)).

The IGVO algorithm can accommodate any greedy rank-
ing function. Using IGVO we verified that MinFill is indeed
a superior greedy heuristic when seeking low-treewidth de-
compositions. For problems with non-uniform domains, we
observed that the MinComplexity ranking function is often
superior to the MinFill heuristic. We also compared (but do
not report here) the performance of IGVO to exact anytime
algorithms (e.g. (Gogate and Dechter 2004) and stochastic
local search schemes and found IGVO to superior to these
schemes as well.

The contribution of this paper is really two-fold. First, it
brings many known ideas into a single, anytime variable or-
dering framework. Second, it demonstrates benefit of itera-
tive randomized greedy schemes and underscores the impor-
tance of certain design choices when using such schemes.
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