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Abstract

We study iterative randomized greedy algorithms for gener-
ating (elimination) orderings with small induced width and
state space size - two parameters known to bound the com-
plexity of inference in graphical models. We propose and im-
plement the Iterative Greedy Variable Ordering (IGVO) algo-
rithm, a new variant within this algorithm class. An empirical
evaluation using different ranking functions and conditions of
randomness, demonstrates that IGVO finds significantly bet-
ter orderings than standard greedy ordering implementations
when evaluated within an anytime framework. Additional or-
der of magnitude improvements are demonstrated on a multi-
core system, thus further expanding the set of solvable graph-
ical models. The experiments also confirm the superiority of
the MinFill heuristic within the iterative scheme.

Introduction
Having good (i.e., small tree-width) variable orderings in
graphical models is known to be of central significance.
While it was thought initially that this will impact only ex-
act algorithms, many approximation schemes such as gen-
eralized belief propagation, mini-bucket elimination and
AND/OR sampling (Yedidia, Freeman, and Weiss 2005;
Dechter and Rish 2002; Gogate and Dechter 2008) are
highly dependent on the availability of good orderings.

Finding a minimal tree-width ordering is known to be
NP-complete (Arnborg, Corneil, and Proskourowski 1987).
Therefore, the past two decades have seen serious ef-
fort devoted to developing anytime complete algorithms
(Gogate and Dechter 2004) and approximation schemes, e.g.
(Robertson and Seymour 1983; Bodlaender 2009; 2007).
However, the most popular and practical class of approxima-
tions are greedy variable-ordering schemes that utilize var-
ious variable-ordering heuristics (Dechter and Meiri 1989;
Kjaerulff 1992). Greedy schemes are popular because they
are relatively fast, leaving ample time for the exponential
inference computation that follows. Indeed, most recent re-
search in probabilistic inference and optimization in graph-
ical models has focused on advancing exact and approxi-
mate inference methods. This work has resulted in signif-
icant computational improvements (Darwiche 2001; Bac-
chus, Dalmo, and Piassi 2003; Dechter and Mateescu 2007;
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Kask, Dechter, and Gelfand 2010). However, since infer-
ence is exponential in the tree-width, a small reduction in
tree-width (say by even by 1 or 2) can amount to one or two
orders of magnitude reduction in inference time. Thus, huge
computational gains are also possible by simply finding im-
proved variable orderings.

An approach that has proven successful in practice is iter-
atively executing a greedy ordering algorithm with random
tie-breaking and keeping track of the best ordering gener-
ated (Fishelson and Geiger 2003). This scheme is appealing
because it is anytime, easy to employ and easily parallelized.
While empirical evaluations of greedy ordering algorithms
have been conducted (Clautiaux et al. 2004; Kjaerulff 1992;
Larranaga et al. 1997; Bodlaender 2009), iterative schemes
have not been systematically studied.

In this paper we study iterative randomized greedy
schemes for finding variable orderings that can minimize
both tree-width and state-space measures. We focus on the
following ideas:

1. Implementing greedy variable-ordering schemes in a
highly efficient manner.

2. Adding stochasticity to the selection process to encourage
discovery of a more diverse set of variable orderings (in
the spirit of stochastic local search).

3. Aborting iterations of the greedy algorithm that yield un-
promising orderings (in the spirit of branch and bound).

4. Exploiting parallel processing.

Specifically, the paper describes the development of a
highly efficient, parallel variable ordering algorithm - the It-
erative Greedy Variable Ordering (IGVO) algorithm - that
can accommodate any greedy ranking function. The IGVO
algorithm also employs randomized "pooling" during vari-
able selection (an idea from (Fishelson and Geiger 2003))
and early termination rules to stop unpromising iterations.

In an extensive empirical evaluation, we demonstrate an
impressive (5-10x) speedup over a standard greedy variable
ordering implementation. We also show that IGVO finds
far better orderings than a standard implementation. These
gains are attributed to a more efficient implementation, the
pooling scheme and, to a lesser extent, early termination. In
addition, we show that parallelization of the iterative scheme
yields linear speedup using multi-core CPUs.



Background
A graphical model R is a 4-tupleR = 〈X,D,F,⊗〉 that
specifies variables, (finite) domains and functions. The ar-
guments of a function is itsscope. It represents the combina-
tion of all its functions:⊗r

i=1fi. For example, for Bayesian
or Markov networks, the functions are probabilities and the
combination operator is multiplication.

Theprimal graph of a graphical model associates a node
with each variable and connects any two nodes appearing
in the same scope. The set of neighbors ofv in a graph
G = (V,E) is denotedNG(v) = {w ∈ V |{v, w} ∈ E}
and the neighbors includingv itself is denotedNG[v] =
NG(v) ∪ {v}. We assume that the reader is familiar with
graph concepts, such as cycles, chords and cliques.

DEFINITION 1. Variable ordering, Simplicial variable - An
ordering of a graphG = (V,E) is a bijectiond : V →
{1, 2, ..., n}, where|V | = n. An ordered graph is a pair
(G, d), whered = V(1), ..., V(n) is an ordering. A vertex
v ∈ V is calledsimplicial, if the set of its higher ordered
neighbors{w|{v, w} ∈ E ∧ d(w) > d(v)} forms a clique.
An elimination orderingd if perfect, if allv ∈ V are simpli-
cial.

Note that we often denote the nodesV by the variables
of the graphical modelX. A variable orderingd induces a
sequence of supergraphs ofG, defined as follows.G0 = G,
and for all1 ≤ i ≤ n, Gi is the graph obtained fromGi−1

by adding edges so that all vertices inCi = NGi−1
(Xi) ∩

{Xi+1, ..., Xn} are pairwise connected. New edges added
during the elimination process are called fill edges.Fi =
E(Gi) \ E(Gi−1) is the set of fill edges added during step
i. Note that graphGn is chordal and the setCi is a clique.
The process of obtaining graphGi from Gi−1 is referred to
aseliminatingvertexX(i).

DEFINITION 2. Induced width, Treewidth - Given an or-
dered graph(G, d), the induced width ofX(i) = |Ci|.
The width of an ordering isw(d,R) = maxn

i=1 |Ci| − 1.
The induced width of a graph,w⋆, is the minimal induced
width over all possible orderings. Treewidth is identical to
induced-width and we will use those terms interchangeably.

DEFINITION 3. Total State Space - Thetotal state spaceof
an elimination orderd with respect to a graphical model
R is: s(d,R) =

∑n

i=1 s(X(i), Gi) wheres(X(i), Gi) =∏
u∈NGi

[X(i)]
|D(u)| is the space needed to eliminate node

X(i) fromGi andD(u) is the domain of nodeu (Kjaerulff
1992).

Greedy Variable Ordering (GVO) Algorithms
The general greedy variable ordering (GVO) scheme con-
structs an ordering as follows. A vertexv is greedily se-
lected according to a heuristic ranking function. This vertex
is placed into the first position of the ordering, its neighbors
are connected and it is then eliminated. Then a second ver-
tex is selected, placed into the next position of the ordering
and eliminated. This process is repeated until all vertices
have been eliminated. At each step, more than one vertex
may be of minimum cost under the heuristic ranking func-
tion. In such cases, the vertex to be eliminated is selected
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Figure 1: Histogram of induced width and state space size
observed over 20,000 iterations of MinFill with random tie-
breaking on problemlargeFam3-15-54(3511 variables).

randomly from the set of minimum cost vertices - i.e. ran-
dom tie-breaking is used.

Vertex selection is guided by a heuristic ranking function.
Using different ranking functions amounts to building elimi-
nation orders via different greedy algorithms. The following
are three common ranking functions.

1. MinFill Cost - The number of fill edges added. Specifi-
cally,MF (v) = |Fv|, whereFv is the set of fill edges that
would be added if variablev were to be eliminated.

2. MinDegree (also known as MinInduced-Width) Cost -
The degree of variablev in the current fill graph. Specifi-
cally,MD(v) = deg(v).

3. MinComplexity Cost - The complexity of variable elim-
ination. Specifically,MC(v) =

∏
u∈NG[v] d(u), where

d(u) is the domain size ofu. This ranking function is
designed to minimize the total state space size.

The Iterative GVO (IGVO) Algorithm
In this section, we describe our iterative GVO (IGVO) algo-
rithm. We begin by motivating the need for iterative random-
ized algorithms. We then give an algorithmic description of
the basic randomized GVO algorithm, which is a subroutine
of IGVO. Last, we describe the primary differences between
IGVO and existing GVO schemes. This includes a descrip-
tion and complexity analysis of two implementation details
that yield significant speedup.

Demonstrating Variability
Consider the histogram shown in Figure 1, which contains
the empirical distribution of widths over 200000 runs of
GVO using the MinFill ranking function on a particular
Markov network. It is typical of the variability in both width
and state-space size observed while running our greedy
scheme on instances from linkage analysis, and shows the
induced widths of the orderings found (against the left ver-
tical axis) and the (log of) the minimum and maximum state
space size for each induced width found (right vertical axis).
For most of the width values, there is a wide range of state



space sizes; moreover, there is a significant overlap between
state space sizes of neighboring widths. As expected we also
see strong correlation between width and state space size -
as width gets smaller, the state space size declines. This
variability encourages the use of randomness in an iterative
search for low width and low state space variable orderings
and also demonstrates the need for early termination. The
IGVO algorithm is described next.

Algorithmic Description

The basic randomized GVO algorithm is presented in Fig-
ure 2. The algorithm utilizes any ranking functionV C(X),
such as the min-fill, min-degree or min-complexity heuris-
tics described above. The algorithm has a total ofn itera-
tions, wheren is the number of variables in the graphical
model. At each iteration a variable is selected for elim-
ination. Any simplicial variables in the graph are always
eliminated (item 2a) because their elimination does not in-
troduce any new fill edges and increase the width of an or-
dering (Robertson and Seymour 1983). If there are no sim-
plicial variables (item 2b), a pool of thep variables having
the smallest variable cost (wrt. the given ranking function)
are identified. A variableX is randomly selected from this
pool with probability proportional to its cost. The variable
selected is added to the ordering (step 4) and the graph is
updated by removing the variable and adding the necessary
fill edges (step 3).

The GVO algorithm is a subroutine in the main iterative
algorithm presented in Figure 3. The iterative algorithm uses
an objective functionC(d,R) to compare different variable
orderings. The objective function can be either the induced
width of the ordering (i.e.C(d,R) ≡ w(d,R)) or the to-
tal state space of the ordering (i.e.C(d,R) ≡ s(d,R)).
After every iteration, the variable ordering found is com-
pared to the best ordering found so far and the best ordering
is retained. The cost of a partial ordering is also evaluated
in every iteration of the GVO. If this cost exceeds the cur-
rent upper bound,UB, GVO is terminated as completing
the variable ordering will lead to an inferior one. We refer
to discontinuing the GVO in this manner asEarly Termina-
tion. Since an execution of GVO is independent of other
executions (except for the early termination condition), the
main iterative algorithm also executes multiple runs of GVO
in parallel.

Key Enhancements

The iterative GVO algorithm differs from standard GVO al-
gorithms in the following ways:

1. Randomization by pooling - Randomization is intro-
duced into the basic variable selection step. This allows
our algorithm to select variables that are non-optimal ac-
cording to the heuristic ranking function. This is similar
to the idea used in (Fishelson and Geiger 2003), but their
work is based on elimination cost only.

2. Early termination - Our algorithm improves upon naive
iterative greedy implementations by terminating inferior
variable orderings.

Algorithm Greedy Variable Order (GVO)
Input: Graphical modelR, its primal graphG=(V ,E), a rank-
ing functionV C(X), pool sizep, exponente, Objective Func-
tionC(d,R) and Upper BoundUB
Output: A variable orderingd = (X(1), ..., X(n)).
• Initialize: Setd = ∅, W = V .

• For k = 1, ..., n, do, using filled graphGk−1 :

1. If: C(d,R) > UB, Terminate Early

2. Select a variableX to eliminate:

(a) If: any simplicial variables inW , pick one asX,

(b) Else: Order the variables fromW according to costV C.
Let P be a pool of thep lowest cost variables. SelectX
fromP with probability:
V C(X)e/

∑
Y ∈P

V C(Y )e.

3. EliminateX fromGk: connect neighbors ofX, removeX.

4. SetW = W \ {X} andd(k) = X.

• Return: d

Figure 2: The Greedy Variable Ordering (GVO) Subroutine

Algorithm Iterative Greedy Variable Ordering (IGVO)
Input: Graphical modelR, a cost functionV C(X), pool
sizep, exponente, number of threadsm, Objective Function
C(d,R) and Upper BoundUB, timeout/# iterations.
Output: A partial variable orderdO = (X(1), ..., X(m)).

• Initialize: Let d⋆ be the best ordering known at any point,
andUB = C(d⋆, r) be its cost. LetG be the primal graph ofR.

• On m threadsexecute :

1. Computed=GVO(R, G,V C,p,e,UB).

2. If C(d,R) < UB, setd⋆ = d and setUB = C(d,R).

• Return: d⋆

Figure 3: The Iterative GVO (IGVO) Algorithm

3. Optimizing the efficiency of GVO - A significant reduc-
tion in run-time is obtained due to the following algorith-
mic improvements.

• Adding fill edges to the graph has complexity of
O(deg3) because the adjacency of all pairs of neigh-
bors ofX must be checked. By keeping all adjacency
lists sorted, we can reduce this toO(2 · deg2), where
deg is the degree of the variable being eliminated.

• When using the MinFill ranking function, the number
of fill in edges (MinFill removal cost) must be updated
every time a variable is eliminated. Rather than re-
computing the MinFill cost of all vertices, this is typi-
cally done by recomputing the MinFill cost of only the
neighbors ofX and the neighbors ofNG(X). Updating
costs in this fashion is wasteful, since there are only 3
cases where the MinFill cost actually changes. Assum-
ing thatX is being eliminated, the 3 updates are:

(a) For every variablew andu, such that(w, u) ∈ E,



(u,X) ∈ E, (w,X) /∈ E, subtract 1 fromu.
(b) For every fill edge(u, v) added, for everyw such that

(w, u) ∈ E, (w, v) /∈ E, add 1 tou.
(c) For every fill edge(u, v) added, for everyw such that

(w, u) ∈ E and(w, v) ∈ E were not added, subtract
1 fromw.

The first case can be handled as fill edges are added
at no overhead. The second and third add complexity
O(nf · 2 · deg) wherenf is the number of fill edges
added.

4. Combined objectives- The algorithm can consider both
tree-width and state space size as objectives in searching
for variable orderings that minimize both the time and
space of inference computations.

5. Parallelism - The algorithm is clearly massively paral-
lel and can exploit the multi-core architecture of modern
CPUs.

The above enhancements were incorporated into our imple-
mentation of the randomized GVO algorithm with MinFill
ranking function. The complexity gains resulting from point
4 is summarized in the following theorem:

Theorem 1. The complexity of GVO isO(n(w2+ n ·
log(n))+NF ·w), wheren is the number of variables,w is
the width,NF is the number of fill edges. The complexity of
standard MinFill isO(n(n+ w5)).

Proof. The complexity of a single iteration of GVO is
O(deg2+ nf ·deg+ n · log(n)), wheren · log(n) is the cost
of constructing the pool. Overn iterations this is bounded
by O(n(w2+ n · log(n))+ NF · w). Without pooling, the
complexity would beO(n(w2+ n)+NF ·w). In a standard
MinFill algorithm, eliminating a variableX is anO(deg3)
operation, requiring enumeration of all pairs of neighbors
adding edges where necessary. It requires updating MinFill
ranking values for all neighbors and neighbors of neighbors
of X, at a cost ofO(deg5). Selecting a variable isO(n), for
a total single iteration cost ofO(n+ deg3 + deg5). Overn
iterations this is bounded byO(n(n+ w5)).

Experiments
We conducted an extensive empirical evaluation of the sug-
gested scheme and its parameters. The bulk of our experi-
ments were performed on 242largeFamproblems modeling
haplotype and linkage queries on biological pedigree data
from the domain of computational genetics. The problems
have between 2000 and 6000 variables with domain sizes
from 2-6 and induced width ranging from the teens to over
100.

Comparing Greedy Ranking Functions
We first evaluated the impact of different ranking functions
on the induced width and state space objectives.

Minimizing Induced Width. IGVO was run on each in-
stance with each ranking function for 1 hour and the best
width recorded. Figure 4 shows the results in a cumula-
tive manner: For a given width (x-axis) the curves depict
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Figure 4: Cumulative plot of the best widths found by
the different ranking functions for 242largeFaminstances
(higher is better). Timeout 1 hour,p = 8, e = −1.

MinFill MinDeg MinCompl

domain sizes 2-6
# wins 185 3 54

log of min SS 23.6 26.4 25.4
w of min SS 59 62 66

domain sizes 2-30
# wins 108 7 127

log of min SS 37.6 40.5 39.1
w of min SS 61 64 60

Table 1: Results when using state space size (SS) as objec-
tive. All values except number of wins are averaged across
242 largeFamproblems (100,000 iterations per run).

the number of instances (out of 242) having width lower
or equal to the one specified in the x-axis, for each rank-
ing function. Clearly MinFill outperforms the other ranking
functions and returns lower-width orderings across the prob-
lem set.

For lack of space we don’t include the full set of results,
but we can state that on 186 problems MinFill is strictly bet-
ter than both other schemes. On average, the best orderings
found by MinFill have width 3 lower than MinDegree and 7
lower than MinComplexity (corresponding to up to 3 and 7
orders of magnitude better algorithmic performance). Fur-
thermore, on average MinFill finds the best ordering after
836 seconds, 88 seconds before MinDegree and 717 seconds
before MinComplexity.

Minimizing State Space Size. Results of using the three
ranking functions with the state space objective are provided
in Table 1. In the top half, problems have their original do-
main sizes (2-6), while in the bottom half we adjusted the
domains to be either 2 (2/3 of the time) or 30 (1/3 of the
time). We thus see that MinFill performs best by far on the
original configuration, finding the ordering with the small-
est state space size in the vast majority of cases (185 out of
242). However, once the domains are very uneven (bottom
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Figure 5: Magnified cumulative plot comparing various pool
sizes (e = −1, timeout 30 minutes,largeFamproblems).

half of the table), MinComplexity ranking function outper-
forms MinFill in finding smallest state space size in more
cases (127 vs 108), while MinFill has smaller average state
space size.

The Effect of Randomization
Strictly greedy algorithms can get stuck in local minima,
even with random tie-breaking. This is particularly true
when few ties occur while running GVO on a problem
instance. To escape such minima, IGVO is augmented
with the option of making a greedily suboptimal choice,
where we don’t pick a variable with lowest cost, but in-
stead choose among a pool (sizep) of lowest-cost vari-
ables. In particular, the probability of picking variableX
is V C(X)e/

∑
Y ∈P

V C(Y )e, wheree is a weighing con-
stant andP is the pool. In this form,e = 0 yields a uniform
distribution,e < 0 gives preference to variables with lower
cost, ande > 0 leans towards variables with higher cost.

Figure 5 contrasts a standard MinFill implementation
against IGVO with exponente=−1 and varying pool sizes,
focusing on a small part of the cumulative plot for readabil-
ity. We observe that performance improves as the pool size
increases from 1 to 4 to 8, but not much after that (if at all).

Varying the value ofe does not have a major impact on
the overall solution, but we found thate = −1 discovered
the best width sooner thane = 0 or e = 1. For instance,
with p = 8, the minimum width ordering was found after
an average of 478 seconds withe = −1, compared to 888
seconds and 946 seconds fore=0 ande=−1, respectively.

Comparison with Standard MinFill
We furthermore conducted a comparison of IGVO against
a standard MinFill implementation1. In addition to the 242

1An earlier version of our standard MinFill was used in the
UAI-2010 competition with solver(s) that won first place in 4 cat-
egories, and was subsequently improved/enhanced, yielding the
standard MinFill used in this paper. It eliminates all simplical ver-
tices as described in Figure 2 and uses random tie-breaking without
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Figure 6: Magnified cumulative plot comparing standard
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type4problems. Timeout 1 hour.

standard IGVO(1) IGVO(12)
instance n iter w iter w iter w spd

100-18 7,435 6,430 51 26,689 48 324,664 48 12.2
110-19 7,303 3,852 54 13,005 52 158,806 51 12.2
120-18 8,656 6,594 47 17,604 45 211,830 44 12.0
120-25 9,171 3,789 57 14,576 56 176,156 54 12.1
130-20 9,328 3,167 60 12,541 58 154,647 57 12.3
130-22 10,271 3,747 56 13,107 52 168,635 52 12.9
140-23 10,998 2,318 61 7,654 60 91,576 57 12.0
150-22 11,799 2,636 57 8,423 54 99,949 53 11.9
170-18 12,186 2,202 59 6,913 55 82,756 55 12.0
170-22 14,641 2,795 58 8,147 56 97,423 54 12.0
190-19 15,433 3,044 56 6,473 54 77,287 52 11.9
190-21 15,125 5,284 43 9,545 42 115,048 40 12.1

Table 2: Exemplary results comparing standard MinFill with
single- and 12-threaded IGVO (p=8, e=−1) ontype4prob-
lems.n denotes the number of problem variables, iter is the
number of ordering iterations performed within 1 hour,w
the best width found, spd the parallel speedup of IGVO(12).
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previous new
instance n k w space w space

110-21 7,675 5 37 16 TB 33 215 GB
140-20 9,355 5 35 10 TB 28 4 GB
180-21 14,157 5 38 9 TB 31 67 GB
200-18 15,319 5 36 19 TB 30 41 GB

Table 3: Fourtype4problems that were previously infeasible
because of their space requirements, but are now solvable (n
is number of problem variables,k max. domain size).

problem instances used before, we also ran experiments on
82 type4problems from the domain of genetic linkage anal-
ysis as used in (Kask, Dechter, and Gelfand 2010) and on
which we will focus in the following. (Size ranges from sev-
eral thousand to more than fifteen thousand variables; time-
out was set to 1 hour.)

Figure 6 summarizes the results in the same cumulative
manner as before; it includes standard MinFill as well as
single- and 12-threaded IGVO (p=8, e=−1). Table 2 also
lists detailed results for a number of instances. Focusing first
on single-threaded execution, we observe the following:

• IGVO benefits from the strategy of pooling non-optimal
choices and consistently finds orderings with lower width
than standard MinFill, evidenced by the difference be-
tween the two respective curves in Figure 6 and the ex-
amples in Table 2.

• Efficient data structures and implementation allow IGVO
to perform many more iterations – often more than 3 times
as many – in the same time as the standard implemen-
tation (cf. Table 2), in spite of the additional overhead
from pooling. Figure 7 provides further evidence of this
speedup, with more than 80% time savings across a subset
of 100 problem instances.

Parallelization. Table 2 and Figure 6 also include the re-
sults of running IGVO with 12 parallel threads (on dual 6-
core CPUs, i.e. 12 cores). Apart from the fact that it re-
turns further improved orderings, we see that the parallel
algorithm completes roughly 12 times as many iterations as
the single-threaded one, confirming fairly linear scaling as
expected. (Speedups greater than 12 can be explained by
the increasing impact of early termination as the minimum
width improves with the number of iterations.)

Early Termination. Figure 7 also shows the relative im-
pact on time of early termination. We see that it gives a
significant speedup (between 20 and 40%) when applied to
standard MinFill. In case of IGVO, however, which already
incorporates a host of other optimizations and extensions,it
only provides a small additional benefit – about 5% on aver-
age.

pooling. However, updating each vertex takesO(deg3) time as op-
posed to theO(nf · deg) of the optimized variant. In addition, the
standard implementation is run iteratively and employs the early
termination criteria.
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Figure 8: Cumulative plot comparing standard MinFill,
single-threaded IGVO, and 12-threaded IGVO on protein
folding problems. Timeout 1 hour.

standard IGVO(1) IGVO(12)
instance n iter w iter w iter w spd

pdb1e18 618 1.72E+5 37 8.61E+5 32 1.02E+7 31 11.8
pdb1gnt 443 3.28E+5 33 1.53E+6 26 1.82E+7 25 11.9
pdb1i24 337 4.46E+5 33 2.20E+6 27 2.62E+7 27 11.9
pdb1m6i 375 4.88E+5 32 2.06E+6 25 2.45E+7 25 11.9
pdb1nqe 457 3.82E+5 34 1.56E+6 31 1.81E+7 30 11.5
pdb1qpk 332 4.13E+5 32 2.38E+6 26 2.87E+7 26 12.1
pdb1c3r 636 1.48E+5 40 7.01E+5 32 8.33E+6 32 11.9
pdb1e3d 1298 4.09E+4 59 1.83E+5 53 2.30E+6 53 12.5
pdb1eg5 609 1.63E+5 37 7.46E+5 32 8.91E+6 32 12.0
pdb1fnn 658 1.82E+5 27 7.57E+5 24 8.99E+6 23 11.9
pdb1gnl 866 1.38E+5 34 4.94E+5 30 5.95E+6 29 12.0
pdb1h80 744 1.92E+5 33 6.69E+5 30 7.92E+6 29 11.9
pdb1i2m 919 1.07E+5 39 4.35E+5 34 5.09E+6 34 11.7
pdb1i7n 530 2.79E+5 29 1.17E+6 26 1.41E+7 25 12.0
pdb1jet 457 2.40E+5 36 1.25E+6 31 1.46E+7 30 11.7

Table 4: Exemplary results comparing standard MinFill with
single- and 12-threaded IGVO (p = 8, e = −1) on protein
folding problems (max. domain sizek = 81). n denotes the
number of problem variables, iter is the number of ordering
iterations performed within 1 hour,w the best width found,
spd the parallel speedup of IGVO(12).

Pushing the Boundaries of Feasibility
Table 3 lists four problem instances whose massive memory
requirements of many terabytes made solving them previ-
ously impossible, even for powerful schemes utilizing exter-
nal memory (Kask, Dechter, and Gelfand 2010). Running
IGVO(12) for one hour, however, yielded good orderings
that allow for solving these instances with mere gigabytes
of hard disk space, a significant improvement.

Protein Folding Problems
We conducted another set of experiments on 138 protein
folding / side-chain prediction problems modeled as Markov
networks (Yanover and Weiss 2002) – here the max. do-



main size isk = 81, which makes finding a low-width or-
dering particularly important. Figure 8 shows a cumulative
summary plot while Table 4 presents select results in detail.
Again we see that IGVO is able to perform many more it-
erations than the standard implementation and consistently
finds orderings with lower width, often by a considerable
margin. However, the problems are small enough (mostly
less than 1,000 variables) that the move to parallel IGVO
does not significantly improve the width of the returned or-
derings.

Conclusions

The paper studies the iterative application of stochastic
greedy ordering schemes showing that it may currently be
the primary (and perhaps the only) practical scheme for find-
ing low-treewidth decompositions. Such schemes are ap-
pealing because of their simplicity, flexibility, anytime na-
ture and trivial parallelization. Within this class of schemes,
we presented theIGVO algorithm and demonstrated its su-
periority to current variants in terms of both run-time and
finding improved orderings. We showed empirically, on
hard instances from computational biology, that IGVO’s su-
periority can be attributed to: 1) Implementation efficiency
- by utilizing new data-structures and good software engi-
neering, IGVO can execute many more iterations in a given
amount of time. This is particularly impressive since the
baseline (standard) implementation is by itself highly ef-
ficient. 2) Randomization via pooling - the parametrized
scheme for introducing stochasticity to the selection pro-
cess allows IGVO to explore more diverse orderings than
standard randomized GVO. For certain parameter settings
this yields better results, despite the pooling overhead. 3)
Early termination - this was shown to have a marginal effect
on IGVO but much greater impact when the basic greedy
scheme is less efficient.

We demonstrated additional speedup and found improved
orderings when running IGVO on a multi-core machine.
This additional gain allows us to perform exact computa-
tions on quite a few problems that could not be solved even
when using external memory (i.e., solved by BEEM (Kask,
Dechter, and Gelfand 2010)).

The IGVO algorithm can accommodate any greedy rank-
ing function. Using IGVO we verified that MinFill is indeed
a superior greedy heuristic when seeking low-treewidth de-
compositions. For problems with non-uniform domains, we
observed that the MinComplexity ranking function is often
superior to the MinFill heuristic. We also compared (but do
not report here) the performance of IGVO to exact anytime
algorithms (e.g. (Gogate and Dechter 2004) and stochastic
local search schemes and found IGVO to superior to these
schemes as well.

The contribution of this paper is really two-fold. First, it
brings many known ideas into a single, anytime variable or-
dering framework. Second, it demonstrates benefit of itera-
tive randomized greedy schemes and underscores the impor-
tance of certain design choices when using such schemes.
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