
Advanced Structured Prediction

Editors:

Sebastian Nowozin Sebastian.Nowozin@microsoft.com

Microsoft Research

Cambridge, CB1 2FB, United Kingdom

Peter V. Gehler pgehler@tuebingen.mpg.de

Max Planck Insitute for Intelligent Systems

72076 Tübingen, Germany

Jeremy Jancsary jermyj@microsoft.com

Microsoft Research

Cambridge, CB1 2FB, United Kingdom

Christoph Lampert chl@ist.ac.at

IST Austria

A-3400 Klosterneuburg, Austria

This is a draft version of the author chapter.

The MIT Press

Cambridge, Massachusetts

London, England

1 Herding for Structured Prediction

Yutian Chen yutian.chen@eng.cam.ac.uk

University of Cambridge

Cambridge, UK

Andrew E. Gelfand agelfand@uci.edu

University of California, Irvine

Irvine CA, USA

Max Welling m.welling@uva.nl

University of Amsterdam

Amsterdam, Netherlands

This chapter introduces a Herding-based approach to structured prediction

tasks. Herding is a general class of learning algorithms originally intro-

duced for learning Markov Random Fields (MRFs). We introduce Herding in

the structured prediction setting and establish connections between Herding

and other approaches to structured prediction, including Conditional Ran-

dom Fields (CRFs), Structured Support Vector Machines (S-SVMs), Max-

Margin Markov (M3) Networks and the Structured Perceptron (SP). We

also demonstrate that Herding can be used to effectively combine piecewise,

locally trained conditional models into a harmonious global model. Herding

does not require training of a CRF to integrate locally trained classifiers, but

instead generates pseudo-samples by iterating forward a weakly chaotic dy-

namical system. We show that the distribution of pseudo-samples produced

by Herding is well defined even when the locally trained classifiers are in-

consistent and give class marginals that disagree. The Herding approach is

illustrated on two different tasks: 1) image segmentation, where classifiers

based on local appearance cues are combined with pairwise boundary cues;

and 2) Go game prediction, where local predictors on overlapping patches

are coordinated for a consistent output.

2 Herding for Structured Prediction

1.1 Introduction

In this chapter, we introduce a Herding-based approach to structured predic-

tion. Herding is a general class of learning algorithms originally introduced

for learning Markov random field (MRF) models (Welling, 2009) and subse-

quently generalized to the discriminative prediction settings (Gelfand et al.,

2010). The theoretical contribution and its application on image segmen-

tation in this chapter are mainly based on the recent work of Chen et al.

(2011) that further generalized Herding to structured prediction problems.

Unlike most traditional learning approaches, which try to learn a single

parameter setting that minimize a suitable loss function (e.g. the negative

log-likelihood), Herding produces a non-convergent sequence of parameters

that can be used to make predictions. In other words, rather than separat-

ing the prediction problem into a training phase followed by a test phase,

Herding can produce predictions on the test set while it iterates.

Herding bears resemblance to many of the more well known approaches

to structured prediction. The Herding update rules are derived from the

zero-temperature limit of the log-likelihood and in this way Herding re-

sembles both Conditional Random Fields (CRFs) (Lafferty et al., 2001)

and max-margin methods, such as Structured Support Vector Machines (S-

SVMs) (Tsochantaridis et al., 2004) and Max-Margin Markov (M3) Net-

works (Taskar et al., 2003). Herding can also be seen as a generalization of

the Structured Perceptron (SP) (Collins, 2002). In the remainder of this sec-

tion, we formalize the structured prediction task and introduce Herding by

contrasting it with the more well known approaches to structured prediction.

1.1.1 Structured Prediction

In structured prediction, we are given a data set D = {(x(n),y(n))}Nn=1 drawn

independently from an unknown joint probability distribution P (x,y). We

seek to learn a function f : X → Y, from input space X to output space

Y = Y1 × · · · × YM . Let y = (y1, . . . , yM) and assume that each component

of y is K-valued, i.e. yi ∈ {1, . . . ,K}. Finally, let yα denote subsets of y.

We consider learning a linear prediction rule of the following form:

ŷ = f(x,w) = argmax
y∈Y

∑
α

wαψα(yα,x), (1.1)

where w = {wα} is a vector comprised of real-valued parameters wα ∈ R
and each ψα(yα,x) : X × Yα → R are corresponding real-valued feature

functions. Note that the prediction rule is linear in the wα’s, but the feature

functions may be non-linear. Throughout this chapter we will use ŷ to

1.1 Introduction 3

indicate predictions made under the current parameter setting. We will also

use ψ = {ψα} to represent the vector of features corresponding to w.

In order to clarify our notation, consider the problem of segmenting

an image. In that task, each yi is a pixel taking one of K labels (e.g.

yi = Airplane or yi = Boat). We construct a planar graph, G = (V,E), over

the image by associating each pixel with a vertex and adding an edge between

adjacent pixels. We might then introduce unary features, ψi(yi,x), for each

pixel i ∈ V and pairwise features, ψij(yi, yj ,x), for each edge e = (i, j) ∈ E.

Doing so would give us a problem with a total of |V |+ |E| parameters.

In the standard learning scenario, our goal is to use the data set D to find

the setting of parameters w that ‘best’ predicts outputs given inputs. The

quality of the parameter setting is assessed via a loss function that measures

the error incurred by predicting ŷ = f(x,w) when the true output is y.

Let `(x(n),y(n),w) denote the loss incurred on training point n given the

parameter setting w. The goal is then to find the setting w? with minimal

empirical loss,

w? = argmin
w

L(D,w) = argmin
w

1

N

N∑
n=1

`(x(n),y(n),w). (1.2)

Several methods for finding w? have been proposed, including Condi-

tional Random Fields (CRFs) (Lafferty et al., 2001) which minimize the

negative log-likelihood (or log-loss), Structured Support Vector Machines

(S-SVMs) (Tsochantaridis et al., 2004) and Max-Margin Markov (M3) Net-

works (Taskar et al., 2003) which minimize differently scaled versions of

the hinge loss and Structured Perceptrons (SPs) (Collins, 2002) which min-

imize the (generalized) perceptron loss. As previously mentioned, Herding

does not seek a single setting w?, but rather produces a sequence of pa-

rameters . . . ,wt−1,wt,wt+1, . . . that can be used to predict a sequence of

outputs . . . , ŷt−1, ŷt, ŷt+1, . . . for each input. In this way, Herding closely

resembles the SP. However, Herding’s update rules can be derived from a

zero-temperature variant of the log-loss. We introduce Herding from this

latter perspective.

1.1.2 Herding and the Zero Temperature Log-Loss

Consider a conditional Gibbs distribution of the form

pτ (y|x,w) =
1

Zτ (x,w)
exp

(
1

τ

∑
α

wαψα(yα,x)

)
, (1.3)

4 Herding for Structured Prediction

where τ is a temperature parameter and Zτ (x,w) is the partition function

Zτ (x,w) =
∑
y′∈Y

exp

(
1

τ

∑
α

wαψα(y′α,x)

)
. (1.4)

This conditional distribution in (1.3) is referred to as a CRF when τ = 1,

each yi of y is associated with a vertex in some graph G = (V,E) and each

yi satisfies the Markov property with respect to the graph G.

A common objective of learning is to find the model pτ (y|x,w) that

maximizes the probability of observing the outputs {y(n)}Nn=1 given the

inputs {x(n)}Nn=1. When formulated as a minimization problem, this gives

rise to the negative log-likelihood objective

w?
τ,LL = argmin

w
Lτ,LL(D,w) = argmin

w

1

N

N∑
n=1

`τ,LL(x(n),y(n),w), (1.5)

where the log-loss function is defined as:

`τ,LL(x,y,w) = −τ log pτ (y|x,w) = −
∑
α

wαψα(yα,x)+ τ logZτ (x,w).

(1.6)

The subscript τ in `τ,LL makes the dependence on temperature explicit.

Since the log partition function, logZτ (x,w), is convex in w, the negative

log-likelihood is a convex function of w. Finding its minimum is possible us-

ing standard numerical optimization methods (e.g. limited memory BFGS)

when the log-loss and its gradients can be computed efficiently. The full

gradient updates are

wtα = wt−1α + ηα,t

EP̂ [ψα]− 1

N

∑
n

∑
y′

pτ (y′|x(n),wt−1)ψα(y′α,x
(n))

 ,

(1.7)

where ηα,t is a decreasing step size and EP̂ [ψα] is the empirical average value

of feature ψα in the training data computed as

EP̂ [ψα] =
1

N

N∑
n=1

ψα(y(n)α ,x(n)). (1.8)

Note that the setting w?
τ,LL that minimizes (1.5) has the appealing property

that the empirical average feature, EP̂ [ψα], will equal the average of that

feature under the model - the well known moment matching property of

maximum likelihood estimation.

1.1 Introduction 5

The Herding loss is revealed by taking the zero-temperature limit, τ → 0,

of (1.6)(Welling, 2009):

`Herd(x,y,w) = −
∑
α

wαψα(yα,x) + max
y′

[∑
α

wαψα(y′α,x)

]
. (1.9)

Several observations about this loss function are made in Welling (2009),

including the fact that it has a unique minima at w = 0. As a result,

it would seem pointless to minimize LHerd(D,w) by applying subgradient

updates. However, this is exactly what Herding does! In particular, Herding

iteratively applies the following updates:

ŷ(n),t = argmax
y′

∑
α

wt−1α ψα(y′α,x
(n)) for n = 1 . . . N, (1.10)

wtα = wt−1α + ηα

(
EP̂ [ψα]− 1

N

∑
n

ψα(ŷ(n),tα ,x(n))

)
. (1.11)

In Herding, the step-size ηα is held fixed (note the lack of dependence

on t). Given suitable initialization of w0, this prevents convergence of the

sequence to the trivial minima at w = 0. Moreover, the sequence will be

non-convergent if at least one incorrect prediction is made in every iteration

- i.e. ŷ(n),t 6= y(n) for at least one data point n in every iteration t. The

sequence . . . ,wt−1,wt,wt+1, . . . will also not diverge as long as an easy to

check criteria is satisfied (see 1.1.4 for more on this criteria). Last, and most

importantly, the average over the sequence of features produced by Herding

will match the empirical average of features in the following sense (Gelfand

et al. (2010)):∣∣∣∣∣EP̂ [ψα]− 1

T

T∑
t=1

1

N

∑
n

ψα(ŷ(n),tα ,x(n))

∣∣∣∣∣ = O

(
1

T

)
∀α. (1.12)

Thus, Monte Carlo averages over the sequence of states produced by Herding

will match the moments of the training data as if they were sampled directly

from P̂ - albeit at a faster rate than independent sampling from P̂ . We

will refer to these states as pseudo-samples from now on, as the Herding

algorithm is a deterministic procedure rather than a random sampling

algorithm. This matching property will be discussed in more detail in

Section 1.2, so we defer further discussion until that time.

1.1.3 Herding and Max-Margin Methods

The model, p(y|x,w?), that is learned by minimizing the log-loss does not

utilize the knowledge that it will be used to make predictions under the

6 Herding for Structured Prediction

MAP prediction rule in (1.1). Training in this agnostic manner is justified

by Bayesian decision theory when the learned model, p(y|x,w?), closely

resembles the true (and unknown) distribution, P (y|x), that our data was

drawn from. If p(y|x,w?) differs greatly from P (y|x), then it may be

beneficial to find parameters that directly optimize the MAP prediction

rule. This is exactly the aim of max-margin methods, such as S-SVMs and

M3 networks.

We follow the approach of Pletscher et al. (2010) in introducing max-

margin methods as it facilitates comparison with Herding. In max-margin

methods, one tries to minimize the following loss:

`MM(x,y,w) = −
∑
α

wαψα(yα,x)+max
y′

[∑
α

wαψα(y′α,x) + ∆(y′,y)

]
,

(1.13)

where ∆(y′,y) is a function that provides a margin between incorrect

predictions (y′) and the ground truth output (y). In S-SVMs, the margin

function might take the form:

∆(y′,y) =

{
0, if y′ = y,

1, otherwise.

In M3 Networks the margin function decomposes over the components of y.

In either case, we see that the max-margin loss is equivalent to the Herding

loss in (1.9), when the margin function is ∆(y′,y) = 0.

S-SVMs are commonly trained via subgradient updates that closely re-

semble the Herding updates

ŷ(n),t = argmax
y′

∑
α

wt−1α ψα(y′α,x
(n)) + ∆(y′,y(n)) for n = 1 . . . N,

wtα = wt−1α + ηα,t

(
EP̂ [ψα]− 1

N

∑
n

ψα(ŷ(n),tα ,x(n))

)
. (1.14)

There are two primary differences between these updates and the Herding

updates in (1.10,1.11). The first change is the presence of the margin function

∆(y′,y) in the S-SVM updates. The second change is the dependence of the

S-SVM step-size on t. In S-SVMs, the step size is steadily decreased so as to

find a single parameter setting w?. Herding holds the step size fixed across

all t, which prevents convergence of the sequence of parameters (so long as

an incorrect prediction is made on the training data in every iteration).

1.1 Introduction 7

1.1.4 Herding and the Structured Perceptron

The Structured Perceptron (SP) was introduced by Collins for sequence

labeling problems, such as the aforementioned POS tagging task (Collins,

2002). As its name suggests, it extends Rosenblatt’s classic perceptron

learning algorithm (Rosenblatt, 1958). The SP is delightful because of its

simplicity. At every iteration t, choose a data point nt from our data set1

and apply the following update rule:

ŷ(nt) = argmax
y′

∑
α

wt−1α ψα(y′α,x
(nt)),

wtα = wt−1α +
(
ψα(y(nt)α ,x)− ψα(ŷ(nt)α ,x)

)
. (1.15)

Note that if ŷ = y, then wtα = wt−1α and our parameters do not change.

Written in this form, the SP differs from Herding only in that it is an

online algorithm - updating on the training data one-by-one, rather than

on the entire training set. However, Herding generalizes the SP in a few

important ways not immediately clear from the current presentation. First,

in many applications (e.g. image segmentation) it is not possible to exactly

find the MAP state and one is forced to find an approximation to the MAP

configuration. Approximate inference, it turns out, is non-problematic and

Herding will still satisfy the moment matching property in (1.12) so long as

a simple to check condition from the Perceptron Cycling Theorem (PCT) is

satisfied (Gelfand et al., 2010). This PCT condition also justifies the use of

mini-batch updates that use a subset of the training data (including online

schemes with batch size of one). We describe the PCT condition now as its

introduction will aid understanding of forthcoming results.

The Perceptron Cycling Theorem is a classic result due to (Minsky and

Papert, 1969; Block and Levin, 1970), which states:

Theorem 1.1. The sequence of (parameter) vectors . . . ,wt−1,wt,wt+1, . . .

generated using the iterative procedure wt+1 = wt+vt remains bounded (i.e.∥∥wt‖2 < ‖w0
∥∥
2

+M for some constant M > 0) if:

1. The domain of vt is a finite set V;

2. The norm of vt is bounded - i.e. max
v′∈V

‖v′‖2 <∞; and

3. In every iteration t, 〈wt,vt〉 ≤ 0.

1. Note that a data point can be picked multiple times.

8 Herding for Structured Prediction

As a consequence, if the PCT holds then it can be shown that∥∥∥∥∥ 1

T

T∑
t=1

vt

∥∥∥∥∥
2

= O

(
1

T

)
, (1.16)

which perhaps unsurprisingly has the form of the Herding moment matching

property in (1.12).

The PCT can be applied to Herding by identifying the update vectors as

vt =

(
EP̂ [ψ]− 1

N

∑
n

ψ(ŷ(n),tα ,x(n))

)
,

where as usual ŷ(n),t = argmaxy′∈Y
∑

αw
t−1
α ψα(y′α,x

(n)). The domain of

the update vectors is a finite set V because in every iteration there are

an exponential number of configurations ŷ(n),t ∈ Y for each of the N data

points. The norm of vt will also be bounded if the feature functions are

appropriately specified. The easy-to-check criteria referred to throughout

this chapter is the third condition of the PCT - namely, that the inner

product of the parameter and update vectors are less than or equal to

zero. As long as this condition is satisfied in every iteration, we can use

approximate inference or mini-batches when applying the Herding updates

and still satisfy the Herding moment matching property of (1.12).

Herding also generalizes the SP in another important way. Since the

Herding updates are derived by taking the zero temperature limit of the

log-loss on a CRF model, the entire derivation can be repeated for a CRF

model with hidden (unobserved) variables. The resulting algorithm can be

viewed as a SP with hidden units that, much like discriminative Restricted

Boltzmann Machines (RBMs), can capture complex interactions among the

observed variables (see Gelfand et al. (2010) for more detail).

1.2 Integrating Local Models using Herding

1.2.1 Piecewise Trained CRFs

Conditional Random Fields (CRFs) are a standard approach for combining

local features into a global conditional distribution over labels for structured

prediction. To specify a CRF model, one must first define feature functions

ψα(yα,x), where yα is a subset of the labels associated with ψα and x are

inputs. For example, in the image segmentation task, one might define a

1.2 Integrating Local Models using Herding 9

feature of the form:

ψi(yi, yj , xi) =

{
1 if yi = yj AND xi > 0.5,

0 otherwise.
(1.17)

This feature encodes a preference for the label of pixel i to agree with the

label of adjacent pixel j when the intensity at pixel i is greater than 0.5.

The label subsets indexed by α can overlap, forming a loopy graph over the

labels y. In this way, the CRF framework can utilize very rich features.

As discussed in the previous section, such features can be incorporated

into a probabilistic model by associating model parameters {wα} with each

feature function {ψα}:

pCRF-1(y|x,w) =
1

Z(x,w)
exp

(∑
α

wαψα(yα,xα)

)
. (1.18)

The model parameters can be learned from data by, for example, minimizing

the log-loss described in (1.5). While this is quite elegant, it poses a practical

problem in that each feature function ψα has a distinct parameter wα to be

estimated. In typical image labeling problems, there may be thousands of

parameters to learn (e.g. one for every pixel and pair of pixels in every

image). In such cases, there may be less than one pixel of information per

parameter, which may lead to extreme over-fitting.

A common remedy for the explosion of parameters is to train the CRF

model in stages. In the first stage, we train a set of local discriminative

models (i.e. classifiers) and then in the second stage we integrate the

information from the local classifiers to make a coherent prediction. For

example, in the image segmentation task, we might train a unary probability

model pi(yi|xi) that predicts the label at pixel i and a pairwise classifier that

predicts the probability that two adjacent pixels i and j have different labels

pij(yi 6= yj |xi, xj) and form a boundary.

One of the main questions addressed in the remainder of this chapter is

how to effectively integrate the information of local, piecewise trained (Sut-

ton and McCallum, 2007), discriminative probability models, pα(yα|xα). A

common approach is to incorporate the local classifiers by taking their log

probabilities as feature functions and combine them using a small number

of parameters to balance their respective local information.
This is exactly the approach adopted in Fulkerson et al. (2010), where

the unary and pairwise classifiers are incorporated using feature functions
ψi(yi,x) = − log pi(yi|xi) and ψij(yi, yj ,x) = − log pij(yi 6= yj |xi, xj). A
single parameter λ is introduced to trade the relative importance of the

10 Herding for Structured Prediction

unary and pairwise classifiers. This yields the following CRF model:

pCRF-2(y|x, λ) =
1

Z(x, λ)
exp

∑
i

log(pi(yi|xi)) + λ
∑
i,j

log(pij(yi 6= yj |xi, xj))

 .

(1.19)

In Fulkerson et al. (2010), the unary pi(yi|xi) and pairwise classifiers

pij(yi 6= yj |xi, xj) are trained independently. As a result, there is no longer

reason to expect that the learned model’s moments, EpCRF-2
[ψα] will match

the moments of the training data, EP̂ [ψα], in the following sense (see

Section 1.1.2):

EpCRF-2
[ψα] = EP̂ [ψα]. (1.20)

This is simply because we have only a single parameter to tune, but need

to satisfy a large collection of moment constraints (number of pixels plus

number of neighboring pairs of pixels).

Instead, we might insist that our global model at least approximately

match the moment constraints

Ep[ψα] = Epα [ψα], (1.21)

where the joint empirical distribution P̂ has been replaced with the local

discriminative model pα. For features of the form ψα,zα(yα) = I[yα = zα],

this condition implies that the joint distribution has marginals consistent

with each local probability model∑
y\yα

p(y|x) = pα(yα|xα). (1.22)

In the ongoing image segmentation example, this consistency condition

means that p(yi|x) = pi(yi|xi) and p(yi, yj |x) = pij(yi, yj |xi, xj). However,

with independently trained local classifiers, no joint model can achieve this

as the pα will likely be mutually inconsistent.

The Herding approach we describe in the next section provides an elegant

solution to this problem. Given piecewise trained discriminative models,

it produces a sequence of states . . . ŷt, ŷt+1 . . . that on average satisfy the

marginalization condition in (1.21) when the local models are consistent.

And if the local models are inconsistent, we show that the same procedure

produces a sequence whose average behavior matches that of the closest

consistent model. We thus gain some of the flexibility of the general CRF

formulation of (1.18) in matching moments, while retaining the parsimony

of piecewise training local discriminative models.

1.2 Integrating Local Models using Herding 11

1.2.2 Herding Local Models

The Herding approach we advocate attempts to identify a joint probability

distribution over features ψα that approximately marginalize to the average

features under the local models Epα [ψα]. Let us first assume that the set of

pα are in fact consistent. For example, in the image segmentation task this

means that the pairwise probability model marginalizes down to the unary

model:
∑

yj
pij(yi, yj |xi, xj) = pi(yi|xi), for all settings of yi and adjacent

pixels (i, j).

Consider the following Herding updates:

ŷt = argmax
y′

∑
α

wt−1α ψα(y′α,xα), (1.23)

wtα = wt−1α + ηα
(
Epα [ψα]− ψα(ŷtα,xα)

)
. (1.24)

These are the same as the update equations in (1.10, 1.11) except that

the empirical distribution P̂ is replaced by the local model pα and every

image is processed independently. In the applications that follow, we use

ψα,zα = I[yα = zα], i.e. a unique feature for every state zα in every region.

It can now be shown (Gelfand et al., 2010) that if in every iteration we

satisfy the Perceptron Cycling Theorem condition (see 1.1.4)

Ct =
∑
α

wt−1α

(
Epα [ψα]− ψα(ŷtα,xα))

)
≤ 0, (1.25)

then it follows that∣∣∣∣∣Epα [ψα]− 1

T

T∑
t=1

ψα(ŷtα,xα)

∣∣∣∣∣ = O

(
1

T

)
. (1.26)

We note that this convergence rate is much faster than the Monte Carlo

average computed by independently sampling from pα, which would converge

at a rate of O(
√

1/T).

Herding’s updates generate sequences . . . , (wt, ŷt), (wt+1, ŷt+1), . . . of pa-

rameters and states in such a way that the states come from some joint distri-

bution P (y|x) which has moments Epα [ψα]. Unlike CRF models, the entropy

of this joint model is not expected to be maximal, although empirically it

is often close. Perhaps surprisingly, for many problems local maximizations

are often sufficient to satisfy condition (1.25), allowing us to side-step hard

inference. It should be noted that this is not always the case, in particular

when the constraints are hard or impossible to satisfy as may arise for image

segmentation.

We also emphasize that the dynamical system defined by equations

12 Herding for Structured Prediction

(1.23) and (1.24) do not return a parameterized model. The sequence

. . . (wt, ŷt), (wt+1, ŷt+1), . . . never converges to a fixed point and one should

rather think of this as a deterministic process to generate “representative

points”. In fact, it can be shown that the dynamical system is weakly chaotic

(Welling and Chen, 2010) meaning that the sequence over ŷt is not periodic

and is insensitive to the initial setting of w0.

Not having an explicit model is not a problem for the applications we

have in mind. For instance, in image segmentation the dynamical system

will generate a sequence of segmentations of the input image. From this

sequence we can extract the final segmentation by averaging.

The difference between the Herding approach to integrating locally-trained

models and the CRF-based approach adopted in Fulkerson et al. (2010)

should now be clear. In the Herding approach, one iterates the Herding

updates for several iterations, where each iteration requires finding the

approximate MAP configuration for a subset of training images and then

verifying that the resulting parameter update satisfies the PCT condition. In

every iteration, one also makes predictions on each image in the test set. In

contrast, in the CRF-based approach, one invests up-front time to identify

a setting of the λ parameters that best balance the information from each

local classifier. After finding such a parameter setting, a prediction can be

made once on each image in the test set. The Herding approach is thus best

suited for situations where the test set is known in advance and where it is

relatively easy to perform MAP inference.

1.2.3 Herding with Inconsistent Marginals

We now describe how to handle inconsistent marginals in Herding. When

the vector of Epα [ψα]’s does not reside inside the marginal polytope M
def
=

{Ep[ψα]|∀p}, then by definition there does not exist a joint distribution

p(y|x) with moments {Epα [ψα]}. If we want to train a CRF without reg-

ularization, the parameters will diverge. For Herding this means that the

condition in equation (1.25) cannot always be satisfied, and the norm of

parameters wt will also linearly diverge. Nevertheless, we can still obtain a

stationary joint distribution of states ŷt from the Herding sequence. The po-

tential numerical problems caused by the divergence of wt can be easily pre-

vented by taking an additional normalization step, w ← w/M, ηα ← ηα/M ,

for some constant M . This global scaling will not affect the state sequence

{ŷt} in any way. The most important consequence of inconsistent marginals

is that the moments of the joint distribution do not converge to Epα [ψα]

any more. Instead, we prove in this chapter that the moments orthogonally

project onto the marginal polytope.

1.3 Application: Image Segmentation 13

In the following, we will denote the collection of expectations Epα [ψα] as

ψ̄ and the sample average of the features generated by Herding up to time T

as ψ̃T = 1
T

∑T
t=1ψ(ŷt,x). We now claim that the following property holds:

Proposition 1.2. Assume ψ̄ is outside the marginal polytope M and the

stepsize ηα is constant. Let ψ̄M be the L2 projection of ψ̄ onto M. Then the

average features of Herding ψ̃T converge to ψ̄M at the rate of 1/T .

For a proof of this proposition and the following corollary see the appendix

of Chen et al. (2011).

When ηα depends on the feature index α, we can construct an equivalent

Herding sequence with a constant stepsize and new features {√ηαψα}. Then

Proposition 1.2 still applies except that the L2 distance is weighted by√
ηα. In this way, the step sizes control the relative importance of features.

When we consider features of the form ψα,zα(yα) = I[yα = zα], the

marginal probabilities of Herding pseudo-samples will converge to the closest

consistent marginals in M.

As an immediate consequence of Proposition 1.2, Herding always improves

upon an initial set of moments ψ̄ in the following sense:

Corollary 1.3. Given a feature vector ψ̄ that is an approximation to the

expected feature w.r.t. some unknown distribution, ψ̄true. When running

Herding dynamics with ψ̄, the limit of the empirical average of features will

not increase the L2 error. Specifically, ‖ψ̄M − ψ̄true‖2 < ‖ψ̄ − ψ̄true‖2 when

ψ̄ /∈M, and ψ̃T → ψ̄ otherwise.

1.3 Application: Image Segmentation

Piecewise training approaches are fairly common in computer vision tasks,

such as image segmentation, because the vision community has spent con-

siderable time developing state-of-the-art, highly specialized classifiers (e.g.

edge or human detectors). Such classifiers are trained independently, often

on disparate data sets, and utilize different input features (e.g. color, tex-

ture, etc). As a result, the marginals produced by such classifiers are likely

to be inconsistent. This provides an ideal setting in which to demonstrate

the approximate marginal consistency property of Herding.

In this section, we consider the image segmentation task, where our goal

is to produce a labeling y for each pixel of an input image x. In the simplest

case, the pixel labels yi are binary and indicate whether a pixel is foreground

or background. In a more complex setting, the yi may take one of K different

class labels (e.g. Boat, Airplane, Sky,. . .). Since a typical image contains tens

14 Herding for Structured Prediction

of thousands of pixels, it is fairly common to pre-process an image and group

neighboring pixels into super-pixels. The result of this pre-processing is a

CRF model with a far more manageable number of variables, one for each

super-pixel.

We consider incorporating the output of two local classifiers. One of

the classifiers provides unary conditional probabilities {pi(yi|xi)} on each

super-pixel; the other classifier provides pairwise conditional probabilities

{pij(yi 6= yj |xi, xj)} on neighboring super-pixels. The former gives the

probability that super-pixel i is of a particular class (e.g. yi = ‘Boat’); the

latter suggests the existence of boundaries.

We adopt the approach of Fulkerson et al. (2010) and use the CRF defined

in equation (1.19) with a single parameter λ. The best value of λ is estimated

on a validation set using grid search and segmentations are predicted by

finding the ŷ that maximizes pCRF-2(y|x, λ?).
Our Herding algorithm follows equations (1.23) and (1.24) with two types

of features: I(yi = k) and I(yi 6= yj). The step size ηα is scale free in the

sense that multiplying all ηα by the same factor doesn’t change the output

of label sequence yt, and so without loss of generality we set the step size for

unary features to 1 and the step size for pairwise features to λ. The value

of λ is used to trade off the strength of these two sources of information.

The segmentations predicted by Herding are obtained by taking the most

frequently occurring class label for each super-pixel in the Herding sequence

y∗i = argmax
k

T∑
t=1

I[yti = k] ∀i. (1.27)

Notice that the role of the parameter λ is different in the CRF and Herding

approaches. In the CRF model, λ controls the strength of smoothness;

increasing λ always increases smoothness. However, Herding tries the respect

all the probabilities, and λ measures how much attention we pay to each

of these two sources of information. Increasing λ not only increases the

smoothness where pij(yi 6= yj) is small, but also forces an edge where

pij(yi 6= yj) is large. As a special case, for a system of N super-pixels with

λ� 1 and pij(yi 6= yj) = 0 for all neighbors in the label graph, the pairwise

term dominates the system, and all super-pixels will take on the same value.

We apply Herding to image segmentation on the dataset of the PASCAL

VOC 2007 segmentation competition. We compare Herding’s predictions to

those made by a multi-class classifier using local appearance cues only and to

the traditional CRF approach of Fulkerson et al. (2010). Interested readers

can refer to Chen et al. (2011) for a comparison on the GrabCut data set.

On the PASCAL VOC 2007 dataset, we follow a similar experiment setting

1.3 Application: Image Segmentation 15

as that of Fulkerson et al. (2010) and perform segmentation on the level of

super-pixels. Each image is first over-segmented by the global probability of

boundary (gPb) method (Arbelaez et al., 2011). The threshold is set to 0 to

make sure most boundaries are retained. SIFT features are then extracted

and quantized in order to build a visual dictionary. A local multiclass SVM

is trained to provide unary marginals pi(yi|xi) using histograms of the visual

words in each super-pixel and its neighbors at a distance at most N . The

larger N is, the more context information is available for the local classifier,

less noise in the feature histogram but also the more blurred the boundaries

between super-pixels become. By increasing N , the segmentations of the

local classifier changes from inaccurate and noisy but with clear sharp

boundaries to more accurate and smooth but with blurred boundaries (see

the results of the local method of N = 0 in Figure 1.3 and N = 3 in

Figure 1.1). The gPb algorithm provides the probability of a boundary

between two super-pixels, i.e. the pairwise marginals pij(yi 6= yj |x). The

VOC test set includes 210 images, and the “trainval” set is split randomly

into a training set of 322 images and a validation set of 100 images. The

local classifier is trained on the training set, and the (hyper-)parameters of

the CRF and Herding are estimated on the validation set.

For the local models, we predict the super-pixel labels based on the

output of SVMs. For the CRF models, the MAP label is inferred using

the graphcut algorithm (Boykov and Kolmogorov, 2004; Boykov et al.,

2001; Kolmogorov and Zabih, 2004) with an energy as in (1.19). The

parameter λ is estimated by grid search on the validation set. For the

Herding method, the maximization step in (1.23) is also executed using

graphcut. Because the original gPb score is trained on the BSDS dataset and

a lot of boundaries belonging to irrelevant categories of objects in the VOC

dataset are not considered, gPb should be calibrated first. The calibrated

pairwise probability is computed as pV OC(yi 6= yj |x) = pBSDS(yi 6= yj |x)α,

where α controls how sparse the boundaries in the VOC dataset are. The

parameters λ and α are estimated on the validation set by first fixing

α = 1, estimating λ by grid search and then fixing λ and estimating α.

More iterations can be done for better performance. Notice that for CRF,

the function of λ and α appears in the same position in the pairwise term

λα log(pij(yi 6= yj |xi, xj))I(yi 6= yj), and a second parameter is therefore

redundant.

Figure 1.1 shows some examples of the test images, results of different

algorithms as well as their posterior probabilities. The local classifiers are

trained on features from a neighborhood of N = 3. So the unary class

distribution is already smoothed to some extent (compared to Figure 1.3 for

the case of N=0). But Herding still leads to better smoothness and locates

16 Herding for Structured Prediction

Figure 1.1: Examples of segmentation on Pascal VOC 2007 data set. Images on
each line starting from left to right are respectively: (a) the original image, (b)
ground truth segmentation, results of (c) local classifier, (d) CRF and (e) Herding,
results with intensity proportional to the posterior probability of the (f) local
classifier and (g) Herding, and (h) the Herding estimate of the pairwise probability
of the existence of a boundary (the corresponding posterior probability for CRF
cannot be easily obtained). Neighboring superpixels of a distance up to 3 hops are
used for training local SVM. Best viewed in color.

the boundaries more accurately. Most boundaries occur in the place with

strong pairwise probabilities. CRF provides similar benefits as Herding for

regularizing the local classifiers.

We evaluate the performance of these three models by two measurements.

The first one is the average accuracy adopted by VOC 2007 Competition.

It measures the average recall of pixels for each category. The second

measurement is the one adopted by VOC competition after 2007. It measures

the average of the intersection over union ratio for each category. The

results of both evaluation methods are shown in Figure 1.2. The results

show that both Herding and CRF increase the accuracy in most cases,

and Herding always achieves the best accuracy except for N = 2 by the

second measurement. The reduction of the advantage of Herding compared

to CRF in the second measurement may be due to the fact that false positive

detections appear frequently in the background which does not reduce the

recall of the background category by much, but will reduce the intersection

over union ratio of the detected category.

Remarkably, Herding performs much better than the local method when

N = 0. The accuracy is improved from 14% to 22% on the first measurement

and 4% to 9% on the second measurement, while CRF does not help at

all. The local classifier performs poorly because the histogram feature is

1.3 Application: Image Segmentation 17

0 1 2 3 4
10

15

20

25

30

N / Distance of neighboring superpixels

A
c
c
u

ra
c
y
 i
n

 V
O

C
 2

0
0

7

local SVM
CRF
herding

(a)

0 1 2 3 4
0

5

10

15

N / Distance of neighboring superpixels

A
c
c
u
ra

c
y
 a

ft
e
r

V
O

C
 2

0
0
7

local SVM
CRF
herding

(b)

Figure 1.2: Average accuracy of segmentations by the local SVM classifier (cross),
CRF (circle) and Herding (square) with different number of neighboring superpixels
used for extracting local features. N denotes the maximal distance of the neighbor-
ing superpixel used. The left plot uses the 2007 segmentation benchmark criteria
(average recall). The plot on the right uses the 2010 criteria on the 2007 dataset
(average overlap).

b
a
ck
g
ro
u
n
d

a
er
o
p
la
n
e

b
ic
y
cl
e

b
ir
d

b
o
a
t

b
o
tt
le

b
u
s

ca
r

ca
t

ch
a
ir

co
w

d
in
in
g
ta
b
le

d
o
g

h
o
rs
e

m
o
to
rb
ik
e

p
er
so
n

p
o
tt
ed

p
la
n
t

sh
ee
p

so
fa

tr
a
in

tv
m
o
n
it
o
r

A
v
er
a
g
e

Local 46 7 15 10 8 10 31 51 34 17 6 16 41 23 58 50 18 21 15 36 39 26

Recall CRF 56 20 12 2 15 7 33 52 59 8 10 8 31 20 68 55 12 15 15 49 36 28

Herd 62 3 16 3 7 7 38 58 50 15 2 11 58 24 70 54 20 23 14 47 39 30

Local 50 2 6 8 2 0 13 21 14 2 2 4 8 10 24 20 6 8 5 12 10 11

Overlap CRF 65 1 8 0 2 0 15 30 17 3 0 4 5 10 37 24 9 8 5 18 13 13

Herd 60 2 4 4 3 5 23 28 15 4 0 5 20 12 31 22 6 8 3 18 12 14

Table 1.1: Accuracies per category and the average accuracy of PASCAL VOC
2007 dataset. Each model uses the N value that maximizes the average test
accuracy. Top table shows recall (PASCAL 2007 benchmark) the bottom table
shows overlap (PASCAL 2010 benchmark)

computed from very few pixels as discussed in Fulkerson et al. (2010). Thus

regularization on the pairwise term should improve the prediction. It turns

out that the optimal value of λ for Herding is about 1.1× 103 which means

the importance of the pairwise feature is
√
λ ≈ 33 times higher than the

unary feature, matching our expectation. On the other hand, the best value

for CRF is only about 1.1. The difference in the choice of λ leads to the

significant difference in the segmentations as shown with a typical example in

Figure 1.3. Herding outputs a highly smoothed result with clear boundaries

while CRF does not noticeably change the decision of the local classifier.

18 Herding for Structured Prediction

Two properties of Herding previously stated in Section 1.3 would help

explain the distinct choices of λ. Firstly, with a large λ, Herding tries to

average the distribution of superpixels in a smooth area. Although the local

SVMs give very noisy results, the average distributions still contain strong

signals about the true category. In contrast, the CRF computes the product

of distributions which makes the noise in the final distribution even worse.

So CRF has to choose a small λ. To verify this hypothesis, we train a CRF

with energy as a linear function of features pi(yi|xi) and pij(yi 6= yj |xi, xj)

Pcrf-linear(y|x) =
1

Z
exp

∑
i

pi(yi|xi) + λ
∑
i,j

pij(yi 6= yj |xi, xj)

 , (1.28)

which also computes the average of distributions when λ is large. The new

CRF chooses a large λ (≈ 22) as expected and the accuracy is improved

to 16% and 7% respectively. However Figure 1.3 shows that the result is

oversmoothed because of the high penalty of boundaries. Secondly, Herding

not only increases smoothness in flat areas but also encourages boundaries

at strong edges. That is why Herding still captures the shape of the object

correctly even with a large value of λ.

1.4 Application: Go Game Prediction

In this section, we look at another application of the Herding algorithm to

predicting the outcome of a Go game. A Go game is a board game where

two players of different colors, black and white, place stones in turn on a

19×19 board. The player with the larger territory at the end of a game wins.

The game of Go is known to be difficult for artificial intelligence approaches

because: 1) it has a large branch factor, 361, in the game tree; and 2) it is

very hard to evaluate the goodness of an incomplete game because of long

distance correlations between stones. We tackle the second problem and

propose to predict the outcome of a territory given an incomplete board

as a structured prediction task. The predicted territory output can then

be utilized as an evaluation function for the current board. Stern et al.

(2004) proposed a CRF model for prediction with features based on pairs of

neighboring stones. We treat this approach as a benchmark and compare it

to the performance of Herding on the same problems.

In an incomplete game, every position has three possible values, Black,

White, and Empty, while at the end of a game, every position is occupied by

1.4 Application: Go Game Prediction 19

Figure 1.3: A typical example of segmentations when N = 0. The top 2 images are
the original image (left) and the ground truth segmentation (right). The remaining
4 images (left to right, top to bottom) are respectively the segmentation of the local
model, CRF, Herding and a CRF with linear potential functions. The local model
is noisy because the histogram of SIFT features is computed from few pixels.

either Black or White2. Denote by a vector x ∈ {Black,White, Empty}N
the stones of an incomplete game with N = 19× 19 and denote by a vector

y ∈ {0, 1}N the final territory, where 1 means Black and 0 means White.

The task of this section is to model the conditional distribution p(y|x).

While it can be quite difficult to directly compute the joint distribution of

all the stones on the board, it is fairly easy to obtain a local conditional

model for a small patch of stones pα(yα|xα), where α denotes the position

of the patch. Figure 1.4 illustrates a case where the local conditional model

patch is a pair of neighboring stones. We also consider larger patches, such

as a square patch or a cross shaped patch consisting of a stone and its

4 immediate neighbors. Such patches are straightforward to introduce in

Herding, but difficult in the CRF model of Stern et al. (2004) because a

larger patch introduces more parameters and makes inference more difficult.

The conditional probabilities for small patches can be estimated from a

training set by counting the number of occurrences of each patch configu-

2. We adopt the Chinese rule in scoring and ignore the stones shared by both players.

20 Herding for Structured Prediction

Figure 1.4: Part of a Go board of an incomplete game (left) and its final territory
(right). A local model predicts the outcome of a patch (e.g. a pair of stones) based
on its current values.

ration at all patch locations. A uniform prior can be used to smooth this

empirical estimate. These smoothed empirical estimates can be used as lo-

cal predictions of the final territory of each patch Epα [I[yα = zα]|xα], ∀α,zα
given an incomplete game x. We can use these estimates as the input feature

moments, ψα,z(y) = I[yα = zα], and run Herding in (1.23,1.24) to produce

pseudo-samples of the final territory of the whole board, {yt}. The average

of these pseudo-samples are taken as our predicted final territory. Since the

conditional probabilities are estimated independently at each location from

a finite training set, we again have the problem of inconsistent moments.

From the analysis in Section 1.2.3, the joint distribution of y from Herding

will minimize its L2 distance from the input local conditionals.

When the state of a patch in an incomplete game xα is all Empty, a local

classifier cannot tell which player is more likely to win the patch. As an

example, consider the empty patch “A-B” in Figure 1.4. The possession of

this patch depends solely on the stones in its neighborhood. As a result,

the local classifier pAB will not provide any preference for yA and yB to be

Black or White and the 4 possible states of patch “A-B” will have equal

probability: pAB(yAB = BB) = pAB(yAB = WW) and pAB(yAB = BW) =

pAB(yAB = WB). Herding treats these probabilities as moments that the

average over its pseudo-samples must match. These vague moments must be

matched along with more informative moments from neighboring classifiers

(e.g. from the black stones above patch “A-B”). Simultaneously satisfying

all of these constraints will lead to the undesirable result that about half

of the Herding pseudo-samples will be yA = Black and half yA = White.

We avoid this problem by reducing the 4 local moments into two input

moments - namely, pAB(yAB = BB or WW) or pAB(yAB = BW or BW).

This allows Herding to only check if yA and yB have the same color and

ignore the fact that yA is more likely to be one color than the other. As

1.4 Application: Go Game Prediction 21

a result, Herding is free to give high probability to either yA = Black or

yA = White when neighboring patches have a strong preference for either

player. In general, when the conditioning patch is all Empty, we reduce the

inputs moments in this manner by combining states with opposing colors:

Epα [I[yα = zα or ¬zα]|xα is all Empty].

We compare the performance of Herding using a 5-stone cross-shape

patch with the Boltzmann5 CRF model proposed by Stern et al. (2004).

That CRF includes unary features for each single stone, ψi(yi) = yi, and

pairwise features for neighboring stone pairs, ψij(yi, yj) = yiyj . The MLE

of the parameters is learned with two inference methods: a generalization

of Swendsen-Wang sampler and loopy belief propagation (BP). As the

difference of the predictive performance w.r.t. cross entropy is not significant

between those two methods (see Figure 4 of Stern et al. (2004)) and

Swendsen-Wang is much slower than BP, we only compare Herding with

a Boltzmann5 model trained and tested with loopy BP.

We train and test our predictive models on a data set of 25089 games

by professional players3. We prune the games that are not complete, and

use the GNU GO program4 to obtain the final territory of the remaining

games. The data set is then split into a training set of 5993 games and a test

set of 2595 games. We follow the practice in Stern et al. (2004) and train

Herding and CRF in three stages of 20, 80, and 150 moves. The predictive

performance is evaluated at each of these stages using the metric of cross

entropy between actual territory outcomes, y ∈ {0, 1}N , and the prediction,

ŷ ∈ [0, 1]N :

H =
1

N

N∑
i=1

[yi log ŷi + (1− yi) log(1− ŷi)] . (1.29)

Training each stage of the CRF model takes roughly 3 hours, while only

34 seconds were needed to compute the local conditional probabilities used

by Herding. Prediction times are similar for the two methods: an average of

0.37 seconds per test game in the CRF and 0.5 seconds for Herding.

Figure 1.5 shows the cross entropy on the test set with the CRF model

and Herding. The mean of the cross entropy for both the CRF model and

Herding as well as the variance for the CRF decrease at later stages of games.

This is reasonable since when a game is close to complete, it becomes easier

to predict the final territory. Compared to the CRF, Herding has smaller

variance across different games throughout all the stages. It also achieves

3. Provided by http://gokifu.com.
4. Downloaded from http://www.gnu.org/software/gnugo.

22 Herding for Structured Prediction

CRF 20 Herd 20 CRF 80 Herd 80 CRF 150 Herd 150
0

0.5

1

1.5

C
ro

ss
 E

nt
ro

py

Figure 1.5: Cross entropy of final territory prediction on the test set by the CRF
model and Herding at Move 20, 80, and 150. Lower is better.

better average prediction than the CRF at an early stage (Move 20) with

both lower mean and smaller variance. But as the game progresses, the

advantage diminishes, and it is eventually outperformed by the CRF at a

later stage (Move 150).

We compare the predictions of these two methods with a rule based

commercial software, “Many Faces of Go,” using an example game in

Figure 1.6. We can see the apparent difference between the predictions

of Herding and the CRF. Herding tends to make conservative predictions

especially in empty areas such as the middle of the board at Move 20. It is

confident only when one player has a clearly stronger influence, for instance,

in the upper right corner. In contrast, the CRF tends to be overconfident

about its predictions as shown in those empty areas at Move 20 and 80.

This problem is also mentioned in Stern et al. (2004) where the Swendsen-

Wang sampling algorithm gives more conservative predictions than loopy

BP (Figure 2). However, it still appears to be overconfident especially at

the early stages when there are few stones nearby. As the game progresses,

it becomes increasingly clear whose territory the remaining empty areas

belong to. In that case we should be able to make a confident prediction

about those areas according to their surrounding stones’ color and the CRF

method shows superior performance to Herding as observed at Move 150.

Also, we notice that the CRF is capable of detecting captured stones such

as the two white stones in the lower middle part at Move 80 and 150 but

it often makes false positive mistakes at early stages of a game. In contrast,

Herding usually has conservative predictions for captured stones.

1.4 Application: Go Game Prediction 23

(a) MFoG, Move 20 (b) Herding, Move 20 (c) CRF, Move 20

(d) MFoG, Move 80 (e) Herding, Move 80 (f) CRF, Move 80

(g) MFoG, Move 150 (h) Herding, Move 150 (i) CRF, Move 150

Figure 1.6: Territory predictions of “Many faces of go” (MFoG), Herding and
the CRF model at three stages: Move 20, 80, and 150. The large circles represent
current stones. MFoG outputs deterministic predictions (small dots). For the latter
2 methods, small squares represent final territory prediction from 0 (maximum
white square) to 1 (maximum black square).

24 Herding for Structured Prediction

1.5 Conclusion

In this chapter we introduced the Herding approach to structured predic-

tion problems and discussed its relationship to other prevailing methods in-

cluding Conditional Random Fields, Structured Support Vector Machines,

Max-Margin Markov Networks, and Structured Perceptrons. In particular,

we present Herding as a new technique for combining local, discriminatively

trained classifiers over subsets of labels into a harmonious joint model. The

method is an alternative to piecewise trained CRFs and follows a markedly

different philosophy in that it never learns a joint model, but rather gener-

ates representative points of some (unknown) joint distribution p(y|x).

An important theoretical contribution of this chapter relative to previous

work (Gelfand et al., 2010) is that we prove that inconsistent marginals will

be orthogonally projected onto the marginal polytope. This makes Herding

a unique way to combine inconsistent local classifiers. Remarkably, the fast

convergence rate of O(1/T) is preserved in this situation.

We demonstrated our algorithm on image segmentation and Go game

prediction tasks, showing it is competitive in both tasks. Herding differs

greatly from approaches that combine local predictions using CRFs. Predic-

tions based on piecewise CRFs output the most likely assignment that max-

imizes the product of local beliefs (implicitly assuming independence), while

Herding obtains a joint distribution over all labels that compromises among

inconsistent local beliefs in terms of the L2 distance. Herding’s predictions

often appear more coherent as a result (see Figure 1.1 and Figure 1.6).

As different local predictions may have various confidence in their predic-

tion, it is important to assign different weights during combination. In the

image segmentation task, we optimize the relative step size λ on an evalua-

tion set in order to balance the evidence from the local appearance cue and

boundary information. In the Go prediction task, we ignore uninformative

marginals from classifiers on empty patches. A more principled approach to

weighting local classifiers is a direction of future research.

1.6 References

P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour Detection and Hierarchi-
cal Image Segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 33(5), 2011. ISSN 0162-8828.

H. Block and S. Levin. On the boundedness of an iterative procedure for solving
a system of linear inequalities. In Proceedings of the American Mathematical
Society, volume 26(2, page 229235, 1970.

1.6 References 25

Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision. IEEE transactions on Pattern
Analysis and Machine Intelligence, 26(9):1124–1137, September 2004.

Y. Boykov, O. Veksler, and R. Zabih. Efficient approximate energy minimization
via graph cuts. IEEE transactions on Pattern Analysis and Machine Intelligence,
20(12):1222–1239, November 2001.

Y. Chen, A. Gelfand, C. Fowlkes, and M. Welling. Integrating local classifiers
through nonlinear dynamics on label graphs with an application to image seg-
mentation. In ICCV, pages 2635–2642, 2011.

M. Collins. Discriminative training methods for hidden markov models: Theory and
experiments with perceptron algorithms. In Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2002.

B. Fulkerson, A. Vedaldi, and S. Soatto. Class segmentation and object localization
with superpixel neighborhoods. In Computer Vision, 2009 IEEE 12th Interna-
tional Conference on, pages 670–677, 2010.

A. Gelfand, L. van der Maaten, Y. Chen, and M. Welling. On herding and the
cycling perceptron theorem. In Advances in Neural Information Processing
Systems 23, pages 694–702, 2010.

V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph
cuts? IEEE transactions on Pattern Analysis and Machine Intelligence, 26(2):
147–159, February 2004.

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proc. 18th International
Conf. on Machine Learning, pages 282–289, 2001.

M. Minsky and S. Papert. Perceptrons - An introduction to computational geometry.
MIT Press, 1969.

P. Pletscher, C. S. Ong, and J. M. Buhmann. Entropy and margin maximization
for structured output learning. In Proceedings of the 2010 European conference
on Machine learning and knowledge discovery in databases: Part III, ECML
PKDD’10, pages 83–98, Berlin, Heidelberg, 2010. Springer-Verlag.

F. Rosenblatt. The perceptron - a probabilistic model for information storage and
organization in the brain. Psychological Review, 65(6):386–408, 1958.

D. H. Stern, T. Graepel, and D. J. MacKay. Modelling uncertainty in the game of
go. Advances in Neural Information Processing Systems, 17:1353–1360, 2004.

C. Sutton and A. McCallum. Piecewise pseudolikelihood for efficient training of
conditional random fields. In Proceedings of the 24th international conference on
Machine learning, pages 863–870. ACM, 2007.

B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In Neural
Information Processing Systems (NIPS-03), Vancouver, CA, 2003.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine
learning for interdependent and structured output spaces. In Proceedings of the
21st International Conference on Machine Learning, New York, NY, USA, 2004.

M. Welling. Herding dynamical weights to learn. In Proceedings of the 21st
International Conference on Machine Learning, Montreal, Quebec, CAN, 2009.

M. Welling and Y. Chen. Statistical inference using weak chaos and infinite memory.
In Proceedings of the Int’l Workshop on Statistical-Mechanical Informatics (IW-
SMI 2010), pages 185–199, 2010.

