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1 Supplementary Material

The following properties of Loop-SRGs are proven in [1]:

THEOREM 1. A Loop-SRG has
∑
R κR = |L|− |E|+ |V |,

where |L| is the number of loop regions, |E| the number of
edge regions and |V | the number of node regions.

THEOREM 2. A Loop-SRG is singular if
∑
R κR > 1.

THEOREM 3. A Loop-SRG is singular iff there is a subset
of loop regions and constituent edge regions such that all
of the edge regions have 2 or more parents.

The following proofs make use of these theorems as well
as the reduction operators presented in [1].

Theorem 4: A Loop-SRG is Non-Singular and satisfies
Counting Number Unity if its loop outer regions are a Fun-
damental Cycle Basis (FCB) of G.

Proof. (FCB ⇒
∑
R κR = 1) From Theorem 2, we see

that µ = E − V + 1 is exactly the number of loops needed
to ensure that

∑
R κR = 1. From this it follows that a loop

SRG will satisfy counting number unity if the set of loop
outer regions form a cycle basis of G.

(FCB ⇒ non-singularity) First remove all factors from
the outer regions. Let B be a FCB of G and map each outer
regionR to one of the cycles in this basis. Since B is funda-
mental, there exists some ordering π such that cycle Cπ(i)

has some edge that does not appear in any cycle preceding
it. Let Rπ(i) be the loop outer region corresponding to cy-
cle Cπ(i) and letEπ(i) be the edge(s) unique to cycle Cπ(i).
Let REπ(i)

be the edge region corresponding to edge Eπ(i).
Since Eπ(i) is unique to Cπ(i), edge region REπ(i)

’s only
parent is Rπ(i). Thus, edge region REπ(i)

can be Dropped.

Let C(Rπ(i)) be the set of cliques of outer regionRπ(i). The
clique corresponding to edge Eπ(i) can be Shrunk since
child regionREπ(i)

was dropped. Let Ēπ(i) = Cπ(i)\Eπ(i)

be the set of edges not unique to Cπ(i). The Shrink opera-
tion leaves the structure G(Rπ(i)) of regionRπ(i) as a chain
over the edges Ēπ(i). This chain can be Split into its con-
stituent edges by choosing the variables not in edge Eπ(i)

as separators. The Split operation produces a set of edge
outer regions RĒπ(i)

and node regions RV̄π(i)
. These edge

and node regions are duplicates of regions already in the
SRG. And since all factors were initially removed, the re-
gions in RĒπ(i)

and RV̄π(i)
can then be merged with the

regions that they duplicate.

The loop outer regions can be reduced in this way along
the ordering π - i.e. beginning with cycle Cπ(µ) and end-
ing with cycle Cπ(i). Reducing all loop regions yields an
acyclic SRG (comprised of edge and node regions) which
is non-singular from Theorem 5 in [1].

Theorem 5: A Loop-SRG is Tree Robust if its loop outer
regions are a Tree Robust cycle basis of G.

Proof. In proving Theorem 4 the idea was to show that a
loop outer region can be reduced if it contains a unique
edge; the fact that the loops form a FCB means that the
loops can be reduced in an order such that each loop has a
unique edge. However, reducing a loop region to its con-
stituent edges requires Merge operations that can only be
performed if the outer regions have no factors. This condi-
tion was guaranteed in the proof of Theorem 4 by initially
removing all factors from the SRG. In a Tree Robust SRG,
only a subset of the factors are removed. Thus, we need a
stronger tool. Using the Factor Move operator it is easy to
show that:

LEMMA 1. A loop outer region can be reduced if it con-
tains at least one unique edge not covered by a factor.

The desired result follows by incorporating this Lemma
into the same sequence of reduction operators used in the
proof of Theorem 4.

To simplify notation, in the following proofs let Gπ(i) =
{Cπ(1), ..., Cπ(i)}.
LEMMA 2. A TR basis B is fundamental.



Proof. (Proof by contrapositive): Assume that B is not
fundamental. Then there exists no ordering π of the cy-
cles in B such that Cπ(i) \ Gπ(i−1) 6= ∅ for 2 ≤ i ≤
µ. This implies that there is no ordering π for which{
Cπ(i) \Gπ(i−1)

}
\ T 6= ∅ for any spanning tree T . Thus,

the basis is not TR.

Theorem 6: Let B|k| denote all size k subsets of cycles in
B. A FCB B is Tree Robust iff I(Bk) is cyclic and not-
empty for all Bk ∈ B|k| for 1 ≤ k ≤ µ.

Proof. (I(Bk) is cyclic for all subsets of B ⇒ TR) First,
we note that since the unique edge graph is cyclic for all
subsets of cycles, the unique edge graph is cyclic for all
partial orderings of the cycles as well.

Let Bπ(i) = B \ {Cπ(i+1), ..., Cπ(µ)} denote the set of cy-
cles not appearing in the partial order π(i+ 1), ..., π(µ).

A basis is not TR if ∃ some j (2 ≤ j ≤ µ) such that {C \
Gπ(j−1)}\T = ∅ for all C ∈ Bπ(j−1) for all orders π ∈ Π.
We show that this cannot occur given that I(Bπ(j)) is cyclic
for all π ∈ Π.

For {C \ Gπ(j−1)} \ T = ∅ for all C ∈ Bπ(j−1) and all
orders, we require that either: 1) C \ Gπ(j−1) = ∅; or
2) C \ Gπ(j−1) be acyclic. Since I(Bπ(j)) is not empty
for all orderings, there must exist some C ∈ Bπ(j) such
that C \ Gπ(j−1) 6= ∅. And since I(Bπ(j)) is cyclic for
all orderings, there cannot exist some tree T that covers all
edges in I(Bπ(j)).

(TR ⇒ I(Bk) is cyclic for all subsets of B). Assume that
I(Bk) is acyclic and consider some spanning tree T that
’covers’ all of the edges in I(Bk) (i.e. I(Bk) \ T = ∅).
Clearly the basis B would not be tree exact w.r.t. to T and
therefore not TR. We now must show that there exists some
ordering such that Bπ(k) = Bk. Assume that such an order-
ing does not exist. Then there must exist some j > k for
which C \Gπ(j) = ∅ for all C ∈ Bπ(j). This would mean
that the basis is not fundamental. However, from the previ-
ous Lemma we know that if B is not fundamental, it is not
TR.

Corollary 1: An FCB is TR iff Bk is TR for all Bk ∈ B|k|

for 1 ≤ k ≤ µ.

Proof. (B is TR ⇒ Bk is TR for all k) Assume there is
some Bk ⊆ B that is not TR. Then there exists some I(Bk)
that acyclic. We know that B is TR iff I(Bk) is cyclic for
all subsets of B. Therefore, B is not TR. (Bk is TR for all k
⇒ B is TR) Follows immediately from proof of Theorem
6.

References

[1] M. Welling, Tom Minka, and Yee Whye Teh. Structured re-
gion graphs: Morphing EP into GBP. In Proc. of the Conf. on
Uncertainty in Artificial Intelligence, pages 607–614, 2005.


