
Post-Processing Elimination Orderings to Reduce Induced Width

Andrew Gelfand

December 11, 2009

Final Project CS 276

Prof. Dechter

1 Introduction

The induced width along an elimination ordering is an important factor in the space and time complexity of
many inference algorithms for graphical models. Indeed, slight changes in induced width can sometimes dictate
whether a particular problem is feasible (i.e. will �t in memory) using variable elimination methods. For this
reason, generating low width elimination orders has received extensive attention in the AI community and many
heuristic ordering methods have been proposed (see e.g. [1, 2] for a nice survey). An extensive case study of several
di�erent heuristics was performed by Fishelson and Geiger [3]. Their results indicated that overall the Min-Fill and
Weighted-Min-Fill heuristics outperformed other greedy ordering methods, including a stochastic greedy algorithm
and max cardinality search. In this report, we build o� of the results of Fishelson and others and ask a simple
question: can post-processing be used to improve upon an already minimal induced width ordering? In particular,
can we utilize the greedy edge removal method introduced in [4] to: 1) Find a minimal �lled graph given the chordal
graph resulting from a particular ordering; and 2) Find a better ordering given the reduced (minimal) �lled graph?

Choosing a low width elimination ordering is just one of several graph theory problems that involve creating a
chordal supergraph from a given graph [5]. In the minimal ordering problem, the objective is to add edges (�ll-in)
the graph such that the largest clique in the graph is as small as possible. In a related problem, the goal is simply
to add as few edges as possible to the graph en route to making it chordal. This related problem is known as
determining minimal �ll. Both �nding a minimum ordering and determining a minimum �ll are NP-hard problems
[6, 7]. Yet, as with the elimination ordering challenge, many di�erent algorithms have been proposed to �nd good
(minimal) �ll. Perhaps the best known of these algorithms is Lex-M, which is a breadth �rst search algorithm that
uses a lexicographic labeling scheme to identify an elimination ordering that introduces as few �ll edges as possible
[8].

The remainder of this report is structured as follows. In Section 2, some necessary de�nitions and background
are provided, including a key theorem and upon which Blair et al.'s post-processing algorithm is based. Section
3 provides a brief description of Blair et al.'s algorithm (referred to herein as MinChordal) and illustrative ex-
ample. Section 4 provides some experimental results from running the post-processing algorithm on a set of UAI
benchmarks. Finally, Section 5 contains some concluding remarks.

2 Background

A graph G contains a vertex set V (G) and an edge set E(G). In this report, attention is restricted to undirected
graphs. The neighbors of a vertex v in graph G is denoted as NG(v). An elimination ordering for a graph with n
vertices is denoted α = v1, ..., vn , where vi denotes the vertex in the ith position - i.e. α(v) = i. The elimination of
a vertex v from graph G results in creation of a supergraph of G. Associated with α is a sequence of supergraphs
G0 ⊆ G1 · · · ⊆ Gn. In particular, the graph Gi is obtained by adding edges to graph Gi−1, so that an edge
exists between all non-adjacent neighbors of vi - i.e. NGi−1(vi) ∩ {vi+1, ..., vn}. Unlike, in traditional variable
elimination practices, the vertex vi is not removed (eliminated) from the graph. Instead, the graph Gn resulting
after elimination of the nth vertex contains all n vertices. The set of �ll edges added by elimination of vi is given

1

as Fi = E(Gi)\E(Gi−1) and the clique induced by elimination of vi is denoted as Ci (Note that Ci consists of vi
and only its higher numbered neighbors. This distinction is needed because variables are not actually eliminated
from G). Finally, the �lled graph, or chordal graph resulting from elimination of all vertices is denoted as (G;α).
This is done to distinguish between the �lled graphs ensuing from alternative orderings, such as (G;β).

The elimination order α on graph G induces a sequences of cliques C1, ..., Cn. The induced width along ordering
α is denoted w ∗ (α,G) and is formally de�ned as:

w ∗ (α,G) def
=

n
max
i=1
|Ci| − 1

In �nding a minimum elimination ordering, the goal is to �nd an α∗ that is a minimum across all possible orderings
- i.e. w∗(α∗, G) ≤ w∗(α,G) for all possible α. The width from the minimum ordering is referred to as the treewidth
of the graph. Since �nding the minimum ordering is NP-hard, we instead strive to �nd a minimal ordering.

In a similar fashion, the minimum �ll problem can be formulated as follows. Letting E(G) denote the set of
edges in the original graph and E(G;α) denote the edges in the graph �lled in along the ordering α, the goal is
to �nd an ordering α∗ such that |E(G;α∗) − E(G)| ≤ |E(G;α) − E(G)| for all possible orderings. The following
theorem from [8] provides a useful characterization of minimal �ll orderings:

α is a minimal elimination ordering (in the minimal �ll sense) if and only if each �ll edge is the unique
chord of a 4-cycle in (G;α).

In other words, if each edge added to G in creating the �lled graph (G;α) is a unique chord, then there is no strict
subgraph of (G;α) that is a chordal graph of G. For a chordal supergraph (G;α) of G, a �ll edge (E((G;α))\E(G))
is a candidate for removal if it is not the unique chord of any 4-cycle in (G;α). So, if (G;α) is not minimal, it
contains candidate edges and these edges can be removed without destroying the chordality of the graph. This idea
forms the basis of the algorithm presented in the next section - namely, greedily removing candidate �ll edges from
the graph to arrive at a reduced graph and then �nding a (perfect) elimination ordering on the reduced graph.

3 The MinChordal Algorithm

The MinChordal algorithm proposed by [4] takes as input: 1) A graph G; and 2) An elimination ordering α. After
computing the �lled graph (G;α) along αand recording the cliques and �ll edges (Ci's and Fi's) associated with the
elimination of each variable, the algorithm moves backwards along the ordering α. Starting with the �nal vertex in
the elimination ordering vn and moving down to the �rst vertex in the ordering, the algorithm looks for candidate
edges among the �ll edges Fi introduced by the elimination of vertex vi. If any of the edges in Fi are candidates, the
algorithm identi�es a graph Wi which is a subgraph of Ci in which all candidate and non-incident edges have been
removed. The original Lex-M algorithm of [8] is then run to determine the minimal �ll needed to make Wi chordal
and any non-unique edges in Wi are removed from the graph (G;α). A detailed description of these algorithms can
be found in the Appendix.

To better illustrate the algorithm, consider the simple example played out in the following �gures.

Figure 1: Filling in G along α

2

Figure 2: Checking v4 - the �rst node encountered with �ll edges

Figure 3: Checking v3 - Lex-M returns no edge, so candidate de removed.

Figure 4: Checking v1- Lex-M returns only one of edges bf, ce. The other is redundant and can be removed.

Figure 5: Finding the Perfect Elimination Ordering (PEO) given the minimal chordal graph

4 Results

The MinChordal algorithm was implemented in C as an extension to the toolbar package (see [10]). The toolbar
package includes implementations of several ordering heuristics including: 1) Max Cardinality; 2) Min-Fill; 3)
Min-Width; and 4) Min-Induced-Width. The MinChordal algorithm was developed in two variants - Min-Chordal-
RAND and Min-Chordal-MF. Min-Chordal-RAND uses an arbitrary (random) elimination ordering as its starting
point, while the Min-Chordal-MF variant uses the elimination ordering returned by Min-Fill as its initial ordering.

A set of experiments were conducted on several of the UAI 2008 benchmarks (see [9] for details). Each benchmark
contains several network instances and each of the aforementioned ordering algorithms were run 10 times on each

3

network in each benchmark. The minimum, maximum and average induced widths from the orderings produced
by each algorithm were tabulated over the 10 trials. In order to get an accurate assessment of the improvement
between Min-Fill and Min-Chordal-MF, in each trial on a network instance, the ordering produced by Min-Fill was
written to �le and read in as the initial ordering for the Min-Chordal-MF algorithm. Con�guring the experiment
in this manner removes the e�ects of any randomness in the ordering process, ensuring a fair comparison.

The results from several of the benchmarks can be seen in the tables below. The rows in each table correspond
to speci�c network instances in each benchmark. Each column contains the min, max and average induced widths
produced by the �ve ordering algorithms. Somewhat surprisingly, post-processing seems to have no e�ect on the
induced widths yielded by the Min-Fill algorithm. As can be seen in the results from the bn20 benchmark in Figure
6, the Min-Chordal-MF algorithm did not o�er a reduction in any of the widths of the Min-Fill heuristic. Similar
results can be found for the Grids benchmark and the UCI Linkage benchmark. To get some measure of the utility
of post processing (and to ensure that the algorithm was properly coded) the Min-Chordal algorithm was fed the
ordering of the Min-Width heuristic on the Linkage benchmark. This set of runs, denoted as Min-Chordal-MW can
be seen in Figure 7. In this case, the Min-Chordal algorithm is able to �nd an ordering that signi�cantly reduces
induced width, yielding widths that are comparable to Min-Fill.

Figure 6: Results from the bn20 benchmark. A collection of 18 two-layer noisy-or Bayesian networks.

Figure 7: Results from the Linkage2 benchmark. While Min-Chordal post-processing yielded no reduction in width
given orderings from Min-Fill, it did signi�cantly reduce width given orderings from Min-Width.

4

Figure 8: Results from the Grids benchmark. A set of grid networks (12x12 to 50x50) with between 144 and 2,500
binary variables.

5 Conclusion

The issue of �nding elimination orderings that yield minimal induced widths was examined in this report. It is
well-believed in the AI community that Min-Fill is a superior ordering heuristic and indeed the experimental results
in this report con�rm that �nding. However, in this report it was desired to extend the case study presented in
[3] and determine whether some amount of post-processing can be used to improve upon an already low width
ordering. In particular, the greedy edge removal method introduced in [4] was proposed as such a post-processing
algorithm because it �nds a minimal �lled graph from a potentially non-minimal graph and also determines a new
(perfect) elimination ordering given the reduced �lled graph.

The results from using the Min-Chordal algorithm indicate that post-processing is able to reduce the induced
width when given a low width ordering from the Min-Width heuristic (i.e. Min-Chordal-MW). However, the
Min-Chordal algorithm was unable to yield any improvement in the orderings produced by Min-Fill. Since post-
processing incurs additional computational overhead, this means that there is no gain in using the Min-Chordal
algorithm for post-processing. It would be interesting an interesting follow on to determine if perhaps other post
processing algorithms, such as those presented in [11] can be used to improve upon Min-Fill.

5

6 Appendix

Figure 9: The MinChordal Algorithm ([4])

6

Figure 10: The Lex-M Algorithm ([8])

References

[1] A. Darwiche, Modeling and Reasoning with Bayesian Networks. Cambridge Press, New York, NY. 2009

[2] D. Koller & N. Friedman, Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge
MA. 2009.

[3] M. Fishelson & D. Geiger, �Optimizing exact genetic linkage computations.� In Proc. of 7th intl. conf. on
research in computational molecular biology (RECOMB), 2003. pp:114-121.

[4] J. R. S. Blair, P. Heggernes, J.A. Telle, �A practical algorithm for making �lled graphs minimal,� Theoretical
Comp. Sci., Vol. 250, Issues 1-2, 6 January 2001.

[5] Y. Villanger, �LEX M versus MCS-M,� Discrete Mathematics 2006 306(3): 393-400.

[6] S. Arnborg, D. G. Corneil, A. Proskurowski, �Complexity of �nding embeddings in a k-tree,� SIAM J. Alg.
Disc. Meth., 8:277�284, 1987.

[7] M. Yannakakis, �Computing the minimum �ll-in is NP-complete,� SIAM J. Alg. Disc. Meth., 2:77�79, 1981.

[8] D.J. Rose, R.E. Trajan, G.S. Lueker, �Algorithmic aspects of vertex elimination on graphs,� SIAM J. Comp.
5 (1976) 266-283.

[9] http://graphmod.ics.uci.edu/uai08/Evaluation/Report/Benchmarks

[10] de Givry, S., Heras, F., Larrosa, J. & Schiex, T. Toolbar - A Constraint Optimization Toolbox. INRA, Biometry
and AI Lab. Toulouse, France & UPC, Language and Computer Sciences Dpt. Barcelona, Spain.

[11] Fomin, F.V., Kratsch, D., Todinca, I. & Villanger, Y. �Exact Algorithms for Treewidth and Minimum Fill-In,�
SIAM J. Comp. (2008) Vol. 38, Issue 3, 1058-1079.

7

