
Solving Cryptograms with the Constrained Cyrpto-EM Algorithm

Andrew Gelfand

December 6, 2009

Final Project CS-271

1 Problem Description

A cryptogram is a type of word puzzle containing a sentence that has been encrypted using an arbitrarily transposed
version of the standard alphabet. The goal of a cryptogram solver is to learn the mapping between the transposed
alphabet and the standard alphabet, known as a cipher, and then use the cipher to decode the encrypted text. In
most cryptograms, the cipher is assumed to be a permutation of the standard alphabet; meaning that each letter
of the standard alphabet is encoded (or replaced) by a single, di�erent letter in the alphabet. So, for example,
the letter 'a' can be used to encode the letter 'z', but cannot also be used to encode the letter 'q' in the same
cryptogram. As an example of the encryption process, consider the following cipher:

standard→ encoding standard→ encoding standard→ encoding

a→ l j → a s→ k
b→ i k → p t→ o
c→ v l→ r u→ m
d→ x m→ g v → b
e→ u n→ e w → s
f → j o→ c x→ q
g → w p→ h y → f
h→ y q → z z → t
i→ d r → n

Using this cipher, the standard sentence

I walked the dog

would be encrypted as

D slrpux oyu xcw

The challenge, given this encrypted text, is two-fold: 1) We must learn the cipher that best translates from the
encrypted words to decoded, English words; and 2) We must actually decode the encrypted text.

Cryptograms are a popular form of word puzzle (there is even a society, called the American Cryptogram Asso-
ciation (ACA), devoted entirely to the hobby of creating and solving mono-alphabetic substitution ciphers!). Given
their popularity, it should come as no surprise that many methods for solving cryptograms have been proposed.
While early strategies were largely manual, over the years several researchers have presented computational ap-
proaches. An early algorithm by Peleg and Rosenfeld formulated the task of discovering the cipher as a graph
(vertex) labeling problem, where the graph's vertices represented the encrypted letters in the cryptogram and the
edges represented di�erent trigrams [9]. To solve the labeling problem they used an iterative 'relaxation' algorithm
in which the labels of each vertex were estimated using the label probabilities of neighboring vertices. 15 years later,
Hart proposed a heuristic tree search method that leveraged both word frequency information and word patterns
to e�ectively prune the search space [7]. Around the same time, Spillman et al. proposed a genetic algorithm for

1

solving simple permutation ciphers [8]. To the author's knowledge, this is the �rst time a stochastic search method
was used to solve a simple substitution cryptogram. More recent ideas include a robust pattern matching or 'dic-
tionary attack' method that also addresses the handling of non-dictionary words (e.g. names) and an evolutionary
method that introduces letter-wise and word-wise constraints imposed by the cryptogram [10, 11].

This report presents a set of algorithms for solving cryptograms using the Expectation Maximization (EM)
framework [2]. In a manner similar to [6], di�erent constraints derived from the word puzzle are imposed on the
posteriors of the latent variables. This has the e�ect of restricting the values taken by the latent variables to those
that are consistent with the constraints of the cryptogram itself. Decoding the word puzzle is formulated as a
weighted constraint satisfaction problem (CSP) and consistent solutions are found using a depth-�rst branch and
bound algorithm.

The structure of this paper is as follows. Section 2 formulates solving a cryptogram as a hidden data problem.
Section 3 provides background on EM and its application to the cryptogram problem. Section 4 provides a descrip-
tion of the constrained EM algorithm. Section 5 contains experimental results from the constrained EM cryptogram
solver and Section 6 contains some concluding remarks.

2 Problem Formulation

The challenge of solving a cryptogram is formulated as a hidden data problem in the following manner. We observe
an encoded word sequence C = c1, ..., cn consisting of n independent and identically distributed words that were
generated using a decoded word sequence W = w1, ..., wn that is hidden from us. The dependencies between
encoded and decoded words is modeled using an R × S matrix Θ (referred to herein as the cipher). Each element
of the cipher describes the belief that an encoded letter lc maps to a decoded letter lw. - i.e. the (r, s)th entry
θrs = p(lc = r|lw = s) describes the probability that the rth letter in the encoded alphabet maps to the sth letter
in the decoded alphabet. Under this setup, the challenge of decoding the cryptogram C involves learning the most
likely cipher Θ and then using the cipher to properly decode C. The issue of learning the most likely cipher will
be addressed in this section. Discussion of the decoding challenge will be delayed until the experimental results
section.

Out of all possible values of Θ we seek the value which is most probable given the observed encoded word
sequence,

Θ̂ = arg max
Θ
p(C|Θ) = arg max

Θ

∑
W∈W

p(C,W |Θ) (1)

s.t.
∑
s∈S

θrs = 1 for r ∈ R

where the equality constraints ensure that each row of Θ is a valid discrete distribution.
To make the objective in (1) operational, we make a few simplifying assumptions. For a given W ∈ W (our

dictionary), the objective can be written as p(C,W |Θ) = p(C|W,Θ) · p(W |Θ). Assuming that the probability of
word i is independent of surrounding encoded words and deciphered words, p(C,W |Θ) can be approximated as

p(C,W |Θ) ≈
n∏
i=1

p(ci|wi,Θ) · p(wi|Θ) =

n∏
i=1

p(ci|wi,Θ) · p(wi) (2)

At this point, the likelihood (2) is expressed in terms of entire words (i.e. ci's and wi's), while the parameter Θ
describes a letter-wise mapping. To connect Θ to the likelihood expression, we assume that the letters in a word
occur independently of the neighboring letters in that word. This allows us to approximate the probability of the
ith word as

p(ci|wi,Θ) ≈
leni∏
j=1

p(cij |wij ,Θ) =

leni∏
j=1

θcijwij
(3)

where wij is the j
th letter in the ith decoded word and leni is the number of letters in the ith word. Combining (2)

2

with (3) yields the following likelihood expression

p(C,W |Θ) ≈
n∏
i=1


leni∏
j=1

θcijwij

 · p(wi) (4)

Several assumptions in this development turn out to be problematic when learning Θ for a particular C. In
particular, independence across words is troubling because it does not enforce consistent assignments across words.
For example, in the two-word cryptogram 'zla tel', the current expression does not prevent a di�erent letter from
being mapped to the 'l' in word 1 and 2. In addition, the letter-wise independence assumption implies that mappings
within a word need not be consistent. So, in the encrypted word 'zlvz', the letter 'a' could map to the �rst 'z' while
a di�erent letter 'q' could map to the second 'z'. These issues are addressed in Section 4, where the distributions
considered are restricted to those that are letter-wise and word-wise consistent.

3 Maximizing Θ using EM

As described in the previous section, our goal is to �nd the maximum likelihood estimate of Θ

Θ̂ = arg max
Θ

ln p(C|Θ) = arg max
Θ

n∑
i=1

ln p(ci|Θ) = arg max
Θ

n∑
i=1

ln
∑
wi

p(ci, wi|Θ)

s.t.
∑
s∈S

θrs = 1 for r ∈ R

The Expectation-Maximization (EM) algorithm is an appropriate procedure for solving such a problem (see e.g.
[2, 3, 4]). It maximizes Θ indirectly using an alternative lower bound F(Θ)

L(Θ) =

n∑
i=1

ln
∑
wi

p(ci, wi|Θ)

=

n∑
i=1

ln
∑
wi

qi(wi)
p(ci, wi|Θ)

qi(wi)

≥
n∑
i=1

∑
wi

qi(wi) ln
p(ci, wi|Θ)

qi(wi)
≡ F(q1(w1), ..., qn(wn),Θ)

where qi(wi) is a non-negative function that sums to one over w for each ci. Standard EM works iteratively on
F(Θ) via two steps:

E− Step : q
(t)
i ← arg max

qi
F(q

(t−1)
1 (w1), ..., q(t−1)

n (wn),Θ(t−1))

M− Step : Θ(t) ← arg max
Θ
F(q

(t)
1 (w1), ..., q(t)

n (wn),Θ(t−1))

The lower bound F(Θ) can be re-written as

F(Θ) =

n∑
i=1

∑
wi

qi(wi) ln
p(ci, wi|Θ)

qi(wi)

=

n∑
i=1

∑
wi

qi(wi) ln
p(wi|ci,Θ)p(ci|Θ)

qi(wi)

=

n∑
i=1

∑
wi

qi(wi) ln p(ci|Θ) +

n∑
i=1

∑
wi

qi(wi) ln
p(wi|ci,Θ)

qi(wi)

=

n∑
i=1

ln p(ci|Θ)−
n∑
i=1

∑
wi

qi(wi) ln
qi(wi)

p(wi|ci,Θ)

3

which means that maximizing F(Θ) is equivalent to minimizing the KL Divergence between the approximating
function qi(wi) and the hidden posterior p(wi|ci,Θ). This distance is clearly minimized when qi(wi) = p(wi|ci,Θ)
for all i.

The M-Step, involves �nding the maximal value of Θ in F(q
(t)
1 (w1), ..., q

(t)
n (wn),Θ(t−1)). This maximization is

simpli�ed by re-writing F as

F(q1(w1), ..., qn(wn),Θ) =

n∑
i=1

∑
wi

qi(wi) ln
p(ci, wi|Θ)

qi(wi)

=

n∑
i=1

{∑
wi

qi(wi) ln p(ci, wi|Θ)−
∑
wi

qi(wi) ln qi(wi)

}

=

n∑
i=1

{∑
wi

qi(wi) ln p(ci|wi,Θ) +
∑
wi

qi(wi) ln p(wi)−
∑
wi

qi(wi) ln qi(wi)

}
(5)

and noticing that the second and third terms in (5) do not depend on Θ. Thus, the M-step can be written as

Θ(t) = arg max
Θ

n∑
i=1

∑
wi

q
(t)
i (wi) ln p(ci|wi,Θ) (6)

= arg max
Θ

n∑
i=1

∑
wi

p(wi|ci,Θ(t−1)) ln


leni∏
j=1

θcijwij

 (7)

= arg max
Θ

n∑
i=1

∑
wi

p(wi|ci,Θ(t−1))


leni∑
j=1

ln θcijwij

 (8)

s.t.
∑
s∈S

θrs = 1 for r ∈ R (9)

The objective in (6) is a concave function of the matrix Θ, subject to the normalization constraints in (9).
We can cast the optimization problem in terms of a new function f(θ11, θ12, ..., θ1|S|, θ21, ..., θ|R||S|) of the elements
within Θ, where |R| and |S| represent the number of rows and columns in Θ, respectively. The normalization
constraints can be enforced by introducing Lagrange multipliers and forming a new functional (see e.g. [1])

L(θ11, θ12, ..., θ|R||S|, λ1, ..., λ|R|) = f(θ11, θ12, ..., θ|R||S|) + λ1g1 + · · ·+ λ|R|g|R| (10)

where gr = θr1, θr2, ..., θr|S| − 1 = 0 ensure that each row of the cipher sums to 1 and λr is the Lagrange multiplier

associated with the rth equality constraint. To �nd the maxima of L(·), we take the derivative with respect to each
of the θrs's and set them equal to zero

∂f

∂θrs
+ λ1

∂g1

∂θrs
+ · · ·+ λ|R|

∂g|R|

∂θrs
= 0 (11)

Keeping in mind that gr = 0 for each row, we now have a system with |R| × |S|+ |R| equations and |R| × |S|+ |R|
unknowns. The partial ∂f

∂θrs
is

∂f

∂θrs
=

∂

∂θrs

n∑
i=1

∑
wi

p(wi|ci,Θ(t−1))


leni∑
j=1

ln θcijwij


=

n∑
i=1

∑
wi

p(wi|ci,Θ(t−1))


leni∑
j=1

∂

∂θrs
ln θcijwij

 (12)

To simplify (12), we note that the partial ∂
∂θrs

ln θcijwij
is:

• 0 if letter cij 6= r or letter wij 6= s (i.e. if we are considering variables other than θrs in Θ); and

4

• 1/θrs if letter cij = r and letter wij = s

Using an indicator function

I
[
cij = r, wij = s

]
=

{
1

0

if index of jth letter of ci = r and index of jth letter of wi = s

otherwise

equation (12) can be rewritten as

∂f

∂θrs
=

n∑
i=1

∑
wi


leni∑
j=1

1

θrs
· I
[
cij = r, wij = s

] p(wi|ci,Θ(t−1)) (13)

In a similar fashion, the partial ∂gt
∂θrs

is non-zero only if t = r. In such cases, the partial is

∂gr
∂θrs

=
∂

∂θrs

(
pr1 + pr2 + · · ·+ pr|S| − 1

)
= 1

Substituting this and (13) into (11) gives:

n∑
i=1

∑
wi


leni∑
j=1

1

θrs
· I
[
cij = r, wij = s

] p(wi|ci,Θ(t−1)) + λr = 0

which we must solve for θrs. Since the constant λr exists solely to enforce the constraint
∑
s∈S θrs = 1, we can set

λr to a constant of our choice and normalize the θrs's after updating (i.e. θrs ← θrs/
∑
s∈S θrs). Setting λr = −1

and solving for θrs gives the following update rule

θ(t)
rs ∝

n∑
i=1

∑
wi


leni∑
j=1

I
[
cij = r, wij = s

] p(wi|ci,Θ(t−1)) (14)

In other words, the probability that the rth letter in the encoded alphabet maps to the sth letter in the decoded
alphabet is updated by an amount proportional to the occurrence of that mapping in our dictionary of words,
weighted by the likelihood of each word under the current parametrization. The general crypto-EM algorithm is
given in Algorithm 1 below.

Algorithm 1 Crypto-EM

Initialization:

• Compute prior over dictionary words p(wi) for wi ∈W

• Initialize Θ(0) with a uniform distribution (i.e. θrs = 1/ |S|)

• Set t = 0

Loop:

• t← t+ 1

• Update θ
(t)
rs using equation 14

• Normalize Θ(t) by computing θ
(t)
rs ← θ

(t)
rs /

∑
s∈S θ

(t)
rs for each element in Θ

Until converged(Θ(t),Θ(t−1)) or t > max iterations

5

4 Constrained EM

Up to this point, we have not addressed how to compute p(wi|ci,Θ(t−1)). Typically, this would be computed using
Bayes rule as

p(wi|ci,Θ(t−1)) =
p(ci|wi,Θ(t−1)) · p(wi|Θ(t−1))

p(ci|Θ(t−1))

=
p(ci|wi,Θ(t−1)) · p(wi)∑
wj
p(ci|wj ,Θ(t−1)) · p(wj)

where the summation is over all wj in our dictionary. However, as was alluded to in Section 2, the independence
assumptions implicit in the expression for p(ci|wi,Θ) can lead to the learning of an cipher that is inconsistent with
the constraints imposed by the cryptogram. To address this shortcoming, we impose constraints on the posteriors
and, as in [5, 6], we express our desired constraints as the requirement that p(wi|ci,Θ) ∈ Q(C). In particular, we
consider two di�erent sets Q; one that enforces letter-wise constraints within encrypted words and a second that also
enforces constraints across words. To better describe how Q(C) is identi�ed, we formulate a constraint satisfaction
problem (CSP) over the letters in C. For a thorough review of CSPs (and constraint processing in general) see [12].

Let X = x1, x2...xm be the sequence of m encrypted letters in the n-word cryptogram C = c1, c2, ..., cn. Each
xi has domain Di = {a, b, ..., z} as it can be assigned to any decoded letter in the alphabet. Let R be a relation on
some subset of letters S ⊆ X and let T be a constraint de�ned on R. If Sk = {xk1 , ..., xkr} then Rk is the Cartesian
product Dk1 × · · · ×Dkr and Tk is some subset of Rk. For example, consider the following text:

Z H B Z O B C E C B O

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

T1 : R1 = R{1,2,3,4} = {{a, l, g, a} , {a, l,m, a} , {a, q, u, q} , ...}
T2 : R2 = R{5,6,7,8} = {{a, i,m, s} , {a, i, r, s} , {a, p, e, x} , ...}
T3 : R3 = R{9,10,11} = {{a, g, e} , {a, i, d} , {a, i, l} , ...}
T4 : R4 = R{3,6,10} = {{a, a, a} , {b, b, b} , {c, c, c} , ...}
T5 : R5 = R{5,11} = {{a, a} , {b, b} , {c, c} , ...}
T6 : R6 = R{7,9} = {{a, a} , {b, b} , {c, c} , ...}

T7 : R7 = R{1,2,3,5,7,8} = all di�erent

The �rst relation R1 is over the letters in the �rst word 'ZHBZ'. The domain of R1 includes all 264 permutations
of the letters a,b,...,z. The constraint T1 enforces that: 1) Assignments to the letters x1x2x3x4 result in a valid
English word; 2) The �rst and fourth letters are the same - i.e. x1 = x4; and 3) Letters 2 and 3 are di�erent from
letters 1 and 4 - i.e. x1 6= x2 6= x3. Similar constraints are imposed on the second and third words via T2 and T3,
respectively. The fourth constraint T4 imposes a restriction across the �rst, second and third word. In particular,
is enforces the fact that in any valid assignment x3 = x6 = x10.

The goal in a CSP is to �nd a consistent solution - i.e. an assignment that satis�es all of the constraints of the
problem. The primal and dual constraint graphs for the sample CSP are given in Figure 1. In the primal graph,
nodes represent variables (letters) and the arcs connect variables included in a constraint. The absence of an arc
means there is no direct constraint. The dual graph represents each constraints scope by a node and connects nodes
(constraints) with overlapping variables.

Using the previous CSP formulation, we can de�ne the restricted distribution space Q(C) to include only the
posteriors of words that are not inconsistent with the constraints in the CSP. In the experiments that follow, we
consider two types of consistency: 1) Node Consistency - QNC(C); and 2) Arc Consistency - QAC(C). In the node
consistent case, p(wi|ci,Θ) ∈ QNC(C) is restricted to the distribution over English words wi ∈ W that are node
consistent with the constraints of the CSP of cryptogram C. Essentially, this means reducing the set of dicitonary
words used to compute p(ci|Θ) from a summation over the full dictionary to a summation over those words that

6

Figure 1: The Primal (left) and Dual (right) constraint graphs for sample CSP. For clarity, the 'all di�erent'
constraint has been omitted.

have a consistent letter-wise pattern with ci, the i
th encrypted word. In the arc-consistent case, QAC(C) is further

restricted so that the domain of each letter contains contain only words that are pairwise consistent among the
constraints of the CSP. This means removing from consideration words in the domain of ci for which no assignment
to the other words in the cryptogram can be found.

5 Results

Evaluation of the constrained crypto-EM algorithm was performed on randomly generated puzzles. The random
puzzles consisted of 4,5,6,7 and 9 words and were generated using the Eppstein dictionary (see [13]). To eliminate
the possibility of selecting words with only a few feasible mappings, candidate puzzle words were selected from 3 to
6 letter words, which account for more than half of the dictionary entries. A set of 100 puzzles of length 4,5,6,7 and
9 were generated and three di�erent variants of the Crypto-EM algorithm were used to solve each puzzle - namely,
the unconstrained crypto-EM algorithm, the node-consistent constrained algorithm (i.e. p(wi|ci,Θ) ∈ QNC(C))
and the arc-consistent constrained algorithm (i.e. p(wi|ci,Θ) ∈ QAC(C)).

After learning the most likely cipher, the puzzles were decoded using a Depth-First Branch and Bound (DFBB)
procedure. Decoding is formulated as a search problem by constructing a tree of depth n (# words in cryptogram)
where each branch includes feasible encrypted-word-to-English-word assignments. For example, consider a simple
two-word cryptogram 'zhbz cbr'. The �rst level in the tree would correspond to all feasible assignments of English
words to 'zhbz', while the second level would consist of assignments to 'cbr' consistent with the assignment at level
1. In other words, if 'that' was assigned to 'zhbz' at level 1, the domain of assignments to 'cbr' would consist of
only three-letter words with middle letter 'a'. At each level of the tree a score (likelihood) is computed for the

assignment of wi to ci as scorewi→ci =
∏leni

j=1 θ̂cijwij
· p(wi). Bounding is used to prevent exploration of branches

with maximum likelihood less than the best known solution. On each puzzle, the DFBB procedure was used to
determine the k most likely assignments, where k was set to 15.

The performance of the algorithms was evaluated using two di�erent metrics. Since the DFBB procedure
returned the k best solutions, the �rst metric used was the Mean Reciprocal Rank (MRR). The reciprocal rank is
the multiplicative inverse of the rank of the correct answer returned by the decoding procedure. So, for example
if the solution to a puzzle was 'that car' and the algorithm returned the following solutions (ranked from most
likely to least likely): 1) 'that cab'; 2) 'that can'; 3) 'that car'... the RR would be 1

3 , since the correct solution was
returned as third most likely. The mean RR is found by averaging across the RR's of all puzzles (queries). The
second metric used was the percentage of correctly assigned letters in the �rst solution returned by DFBB. Using
the previous example, the '% correct' would be 4

5 since there are 5 unique letters in the puzzle 'that car' and the
�rst solution 'that cab' only incorrectly assigned one letter - namely, 'b' to 'r'.

Results for each of the algorithms are summarized in the following table and in Figures 3, 4 and 5. Several
interesting points can be taken from this analysis. In general, and as would have been expected, the arc-consistent
algorithm out-performed the node consistent algorithm which in turn out-performed the unconstrained algorithm.
While the improvement is slight, this result seems to support the idea that there is bene�t to learning the cipher
under constraints and relaxing both inter-word and intra-word independence assumptions. It also interesting to note
that all three algorithms improve steadily as the number of words in the puzzle increases. While increasing puzzle

7

Figure 2: Summary of performance of the 3 crypto-EM algorithms. The means and variances of MRR and %
Correct are given for several puzzle lengths.

length leads to an increase in the number of unique characters in the puzzle, the information gained by increasing
the probability of observing repeated letters far outweighs the cost of mapping additional letters. This also suggests
that the smaller the puzzle, the less bene�t there is in enforcing arc-consistency during learning. Along these lines
as shown in Figure 4, it is interesting to note the drastic decrease in MRR as puzzle complexity increases (puzzle
size is computed as the log of the total number of nodes in the search problem faced by the DFBB procedure, which
is computed as the Cartesian product of the domain of each ci ∈ C).

6 Conclusion

In this report, the problem of solving simple substitution ciphers was formulated as a hidden data problem and
an EM-based algorithm was presented to �nd the maximum likelihood estimate of the substitution cipher. Since
some of the independence assumptions in the original formulation were detrimental to learning 'correct' ciphers,
the EM algorithm was augmented to include constraints on the posteriors used in updating. By formulating an
auxiliary CSP on the letters in the cryptogram, the posteriors were restricted to a constraint set that that was
either node-consistent or arc-consistent with the CSP formulation.

Overall the Crypto-EM algorithm(s) performed quite well, returning the correctly solved puzzle on average within
the 4th most likely response for three-word puzzles. Performance steadily improved as puzzle length increased and
puzzle size (di�culty) decreased. In addition, the analysis in Section 5 demonstrated that constraining the E-step
of EM yielded a modest improvement in performance. Further experimentation and analysis is needed to better
evaluate the bene�t of imposing node and arc consistency constraints on this problem. Ultimately, the idea of
constraining the EM algorithm to �nd more meaningful (useful) solutions is very interesting and has potential
application to other types of problems in AI, such as solving weighted CSPs.

References

[1] Boyd, S. & Vandenberghe, L. Convex Optimization. Cambridge University Press. 2004.

[2] Dempster, A.P., Laird, N.M. & Rubin, D.B. �Maximum Likelihood from Incomplete Data via the EM Algo-
rithm,� Journal of the Royal Statistical Society, Series B, 1997. Vol. 29. No. 1. pp:1-38.

[3] Bilmes, J. �A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian
Mixture and Hidden Markov Models,� International Computer Science Institute, Technical Report: TR-97-021,
April 1998, Berkeley, CA.

8

Figure 3: MRR versus Puzzle Length

Figure 4: MRR versus Puzzle Size (domain size of unconstrained puzzle)

9

Figure 5: Average % Correctly Mapped versus Puzzle Length

[4] Beal, M.J. �Variational Algorithms for Approximate Bayesian Inference,� Ph.D. Thesis, The Gatsby Compu-
tational Neuroscience Unit, University College London, 2003.

[5] Brown, P.F. et al. �The mathematic of statistical machine translation: Parameter estimation,� Computational
Linguistics, 19(2):263�311, 1994.

[6] Graca, J.V., Ganchev, K. & Taskar, B. �Expectation Maximization and Posterior Constraints,� Advances in
Neural Information Processing Systems (NIPS) 20, MIT Press, 2008.

[7] Hart, G.W., �To Decode Short Cryptograms,� Communictions of the ACM, v.37 n.9, p.102-108, Sept. 1994.

[8] Spillman et al., �Use of a genetic algorithm in the cryptanalysis of simple substitution ciphers,� Cryptologia,
vol. 17 , Issue 1 (January 1993), pp:31-44.

[9] Peleg, S. & Rosenfeld, A. �Breaking substitution ciphers using a relaxation algorithm,� Communications of the
ACM, v.22 n.11, p.598-605, Nov. 1979.

[10] Olson, E. �Robust Dictionary Attack of Short Simple Substitution Ciphers,� Cryptologia, v.31 n.4, p.332-342,
October 2007.

[11] Oranchak, D. �Evolutionary algorithm for decryption of monoalphabetic homophonic substitution ciphers en-
coded as constraint satisfaction problems,� Proc. of 10th Conf. on Genetic and Evolutionary Computation,
July 12-16, 2008, Atlanta, GA.

[12] Decther, R. Constraint Processing. Morgan Kau�man, San Francisco, CA 2003.

[13] http://www.ics.uci.edu/~eppstein/cryptogram

10

