
A Comparison of Algorithms for Collaborative Filtering on RBMs

Andrew Gelfand

CS277 Final Report: Due 3/18/2010

1 Introduction

Almost all web retailers employ some form of recommender system to tailor the products and services o�ered to
their customers. A common approach to recommendation tasks is collaborative �ltering, which uses a database of
the preferences of di�erent users - i.e. collaboration - to predict user preferences - i.e. �ltering [3]. Collaborative
�ltering embodies a nearest-neighbor philosophy in that predictions are largely based upon the preferences of other
'like-minded' users. For example, if students A and B both positively rated the text 'Principles of Data Mining' and
student A also favorably rated the text 'Pattern Recognition and Machine Learning', then it is reasonable to think
that student B would also enjoy this text. In principle, collaborative �ltering can be used to make recommendations
to any user on any item. In practice, though, the database of preferences will be very sparse as only a few (if any)
customers may have rated each item. In such situations it is not immediately clear how to identify similar users,
much less make predictions that lead to purchases.

Early approaches to collaborative �ltering relied on simple metrics to �nd similar users. GroupLens, for example,
was an early Internet news system that used the correlation coe�cient between user ratings of articles as a similarity
measure [8]. However, memory-based approaches like GroupLens do not scale without further approximation
because they require access to the ratings of the entire user community. For this reason, approaches such as
singular value decomposition (SVD) that are based on matrix factorization have also been proposed (see e.g. [4, 7]).
However, application of matrix factorization methods to sparse ratings matrices can be a non-trivial challenge. As
such, Ho�man proposed a formal statistical model of user preference using hidden variables over user-item-rating
triplets [6]. Unlike traditional clustering models that use latent variables to indicate which cluster (i.e. group of
like minded people) a user belongs to, Ho�man's probabilistic latent semantic analysis (pLSA) model links users
and their ratings to di�erent latent causes.

More recently, Salakhutdinov et al. proposed an approach to collaborative �ltering using Restricted Boltzmann
Machines (RBMs)[9]. These models were trained using an e�cient learning procedure, known as Contrastive
Divergence (CD), that maximizes an approximation to the true likelihood function[5]. Furthermore, the authors
report performance on the Net�ix data set that is superior to the competitive SVD model posed in [7]. In this report,
we investigate the use of an alternative learning procedure known as Persistent CD[10]. In addition, we demonstrate
that outperforming SVD models using the RBM models is a non-trivial matter, requiring careful parameter tuning,
performance-enhancing tricks and lots of CPU time for training.

The remainder of this report is structured as follows. In the next section I present some necessary background
on RBMs and also discuss the learning CD and PCD learning procedure. In Section 3, I present Salakhutdinov et
al.'s models for collaborative �ltering using RBMs. Section 4 contains experimental results and Section 5 contains
some concluding remarks.

2 Background

2.1 Restricted Boltzmann Machines

RBMs are a speci�c type of undirected graphical model consisting of two layers of binary variables - hidden (H)
and visible (V) - with no intra-layer connections (see Figure 2)[1]. The joint over the visible and hidden variables
is given by the Gibbs Distribution P (V,H) = 1

Z exp(−E(V,H)). In this expression E(V,H) is an energy function

1

de�ned as

E(V,H) = −
Nv∑
i=1

Nh∑
j=1

vihjwij −
Nv∑
i=1

vibi −
Nh∑
j=1

hjbj (1)

where i is used to index the Nv visible nodes, j is used to index the Nh hidden nodes, vi is the state of the ith

visible node (either 0 or 1), hj is the state of the j
th hidden node, wij is the strength of connection (i.e. weight)

between the ith visible node and the jth hidden node and bi and bj represent the bias of the ith visible and jth

hidden nodes, respectively. The parameters in the RBM - i.e. the weights and biases - can be described using a
parameter vector θ. Throughout this report we will make the dependence on θ explicit by writing Eθ(V,H) rather
than E(V,H).

The probability of observing a singleNv-dimensional data point V is given by the marginal P θ(V) =
∑
h P

θ(V,H) =
1
Zθ

∑
h exp(−Eθ(V,H)), where Zθ is the partition function. For a data set consisting of N independent and iden-

tically distributed observations, the log-likelihood can be written as

l(θ) =
1

N

N∑
n=1

lnP θ(Vn) = l(θ)+ − l(θ)− (2)

l(θ)+ =
1

N

N∑
n=1

ln
∑
h

exp(−Eθ(Vn, H)) l(θ)− = ln(Zθ) = ln
∑
h,v

exp(−Eθ(V,H))

where the expression for l(θ) has been broken into two parts: 1) a positive term, corresponding to the evaluation
of each training point under θ; and 2) a negative term, corresponding to the log partition function.

Performing Maximum Likelihood (ML) learning in this model requires taking the gradient of l(θ). The gradient
of the positive term is:

∂l(θ)+

∂θ
=

1

N

N∑
n=1

∂

∂θ
ln
∑
h

exp(−Eθ(Vn, H)) =
1

N

N∑
n=1

∑
h

P θ(H|Vn)
∂
(
−Eθ(Vn, H)

)
∂θ

This quantity is just a conditional expectation with respect to the data, which for weight wij takes the form
∂l(θ)+

∂wij
= 1

N

∑N
n=1

∑
h P

θ(hj |vni) · vni , where vni is the state of the ith visible unit in the nth data point. Similarly,

the gradient of the negative term is:

∂l(θ)−

∂θ
=

∂

∂θ
ln
∑
h,v

exp(−Eθ(V,H)) =

∑
h,v

∂
∂θ exp(−Eθ(V,H))∑

h,v exp(−Eθ(V,H))
=
∑
h,v

P θ(V,H)
∂(−Eθ(V,H))

∂θ

which is just an expectation with respect to the model. Since both the terms involve expectations, the full gradient

is often written as ∆wij = ∂ logP θ(V)
∂wij

= 〈vihj〉data − 〈vihj〉model.
Computing the gradient requires a means to evaluate P θ(H|V) and P θ(H,V). The structure of the RBM a�ords

a convenient representation of P θ(hj |V) (and P θ(vi|H)). Consider a con�guration of all nodes in which some hidden
node j is in state 0. Let Eθ1 denote the energy under this con�guration. By turning node j 'on', keeping the state

of all other nodes �xed, the energy changes by ∆Eθ2−1 = −bj −
∑Nv
i=1 wijvi. Let E

θ
2 = Eθ1 + ∆Eθ2−1 be the energy

in this new con�guration. The conditional probability P θ(hj = 1|V) then takes the form of a sigmoid as

P θ(hj = 1|V) =
P θ(hj = 1, V)

P θ(hj = 0, V) + P θ(hj = 1, V)
=

exp(−Eθ2)

exp(−Eθ1) + exp(−Eθ2)
= σ(−∆Eθ2−1) = σ

(
bj +

Nv∑
i=1

wijvi

)

This yields a convenient form for computing 〈·〉data. While no convenient form exists for P θ(H,V), following a

similar argument P θ(vi|H) = σ
(
bi +

∑Nh
i=1 wijhj

)
and we can approximate P θ(H,V) by generating samples from

a Gibbs sequence alternating between h
(t)
j ∼ P (hj |V (t−1)) and v

(t)
i ∼ P (vi|H(t)). MCMC theory states that under

mild conditions after a suitable length of time v(t) and h(t) will be samples from the stationary distribution P θ(H,V).
In this case, the negative term of the gradient is simply ∆w−

ij = P θ(hj = 1, vi = 1).

2

Figure 1: Illustration of CD and PCD. In CD the chain is started at each step in the ascent from training data. In
PCD, the chain is 'persisted' and started from the previous model.

2.2 E�cient Learning in RBMs

In most applications of MCMC sampling, the goal is to approximate some (posterior) distribution P θ(H,V).
Therefore, it is often acceptable (from a computational standpoint) to run several long chains to get a more
accurate estimate. In the training of RBMs, we are sampling to estimate a gradient and since this estimate is
required at every step during ascent on the ML objective, it would be very time consuming to 'nail down' the
gradient estimates. To make learning in RBMs tractable, one typically runs the Gibbs sequence for only a few
iterations. While doing so introduces bias, we can tolerate such inaccuracy as long as the gradient estimate is in the
right direction. Contrastive Divergence (CD) and Persistent CD (PCD) are two learning procedures that employ
this idea [5, 10].

CD uses precisely the approximation just described - namely the sequence is run for only T steps, where a step is
an update of both H(t) and V (t). The initial state, V (0), of each truncated Gibbs sequence is selected from points in
the training set. This procedure is referred to as CD-T and gradient updates under this approximation are written
∆wij = 〈vihj〉data− 〈vihj〉T . The justi�cation of CD lies in the following two assumptions (see [2] for more detail).
If we regard the training data as samples from the true distribution, then since our model is trying to mimic the
empirical distribution, it is reasonable to start each chain from points within the training set. Second, if we start
the sampler from each of the N training points, compute N di�erent gradient estimates and then average over the
N estimates, the resulting estimate should at least be in the direction of the true gradient.

PCD approximates the gradient in a slightly di�erent manner by observing that the e�ectiveness of CD-T hinges
upon the mixing rate of the Markov chain. If the mixing rate is slow, the gradient estimates produced by CD-T
will poorly re�ect the gradient of the actual likelihood function[10]. In such situations, we could run CD with a
larger T , but doing so would defeat the e�ciencies a�orded by CD. The PCD procedure produces longer chains by
noting that in any step of gradient ascent, the value of θ will change only slightly (especially with small learning
rates). Therefore, we can generate a long chain by 'persisting' the chain and starting the Gibbs sequence from the
end state of the previous step. The di�erence between CD and PCD is illustrated in Figure 1.

3 RBMs for Collaborative Filtering

3.1 The Collaborative Filtering (CF) Model

In the collaborative �ltering problem we are presented with an N ×M ratings matrix, where N is the number of
customers, M is the number of items (e.g. movies) and each item may be rated using integer values from 1 to K
. This form of data presents two problems for the 'standard' RBM model described in Section 2. First, ratings are
often non-binary (K 6= 2). In the Net�ix data set, for example, ratings are integer values from 1 to 5. Second, the
ratings matrix is typically very sparse. If all N customers rated the same set of Nv items, the likelihood function
in 2 could be applied directly, by treating each customer's ratings as a data point. However, since di�erent items
will be rated by di�erent users an alternative model is needed.

For K > 2 rating values, the conditional P θ(vi|H) will no longer be a sigmoid function; instead, it will take the

3

Figure 2: Standard RBM (left), comprised of Nh hidden nodes and Nv visible nodes. The Collaborative Filtering
(CF) model (right) uses a di�erent RBM for each user, but shares weights between users on commonly rated items.
Notice that even though the set of items rated by each user are di�erent, since both User 1 and User N rated item
3 they share the weights bet-wen this item and the hidden units (as illustrated by the emboldened connections). In
addition, each visible node in the CF model is K-ary rather than binary.

form of a normalized exponential or 'softmax' function

P θ(vki = 1|H) =
exp

(
bki +

∑Nh
j=1 w

k
ijhj

)
∑K
l=1 exp

(
bli +

∑Nh
j=1 w

l
ijhj

) (3)

where vki = 1 indicates that vi = k and there are now a unique set of biases, bki , and weights, wkij , for each of the
K possible ratings.

Since users rate only a subset of the the inventory and the items rated by di�erent users will most likely be
di�erent, it is not immediately clear how to de�ne a joint model over all users and items. Salakhutdinov et al.
address this issue by assuming a di�erent RBM for each user and 'sharing' weights on items rated by more than
one user[9]. In other words, rather than having a single distribution with N i.i.d training points, there are a total
of N distributions - one per user - with a single observation from each distribution. These individual models are
tied together by requiring that all users who rate the same item share the weights between the softmax for that
item and all hidden units - i.e. for some item q, wkqj and b

k
q are shared by all users. This further requires that each

of the N RBMs have the same number of hidden nodes. The collaborative �ltering model is shown in Figure 2.
Due to the K-ary ratings, in the CF model the energy function for each RBM is

Eθ(V,H) = −
m∑
i=1

Nh∑
j=1

K∑
k=1

vki hjw
k
ij +

m∑
i=1

lnQi −
m∑
i=1

K∑
k=1

vki b
k
i −

Nh∑
j=1

hjbj (4)

where m denotes the subset of items rated by the current user and Qi =
∑K
k=1 exp(bki +

∑Nh
j=1 bjw

k
ij) is a normal-

ization term. The gradients of the log-likelihood are

∆wkij =
〈
vki hj

〉
data
−
〈
vki hj

〉
model

∆bki =
〈
vki
〉
data
−
〈
vki
〉
model

∆bj = 〈hj〉data − 〈hj〉model

Note that these gradients are for updating the parameters of a user-speci�c model. The parameters of the joint,
'shared weights,' model are updated by averaging across all N users.

3.2 The Conditional Collaborative Filtering (CCF) Model

The model in the previous section ignores an important piece of information - namely, there are some items a user
has purchased (or watched) but we don't have ratings for. This implicit information may provide additional insight
into a user's preferences. For example, consider a situation in which a user has watched a total of �ve movies, but
rated none of them. If all �ve movies were documentaries, this suggests that the user enjoys documentaries even
without explicit ratings. To leverage this implicit information, Salakhutdinov et al. consider a conditional model
in which the joint distribution P θ(H,V) is conditioned on the set of items (movies) purchased (watched) by a user.
In particular, they introduce another set of binary nodes, R, to describe the items purchased by a user and model

4

the interaction between R and the hidden nodes H. Letting ri = 1 if item i was purchased and 0 otherwise, the
conditional distribution takes the form

P θ(hj |V,R) = σ

(
bj +

m∑
i=1

K∑
k=1

wkijv
k
i +

M∑
i=1

ridij

)

where dij is an element of anM×NhmatrixD that models the e�ect of the implicit information on the hidden nodes.
In this model, the rating-conditional distribution P θ(vki |H) is still the softmax de�ned in 3, but the introduction

of the parameters in D requires specifying the gradient ∆dij = ∂ logP θ(V)
∂dij

=
(
〈hj〉data − 〈hj〉model

)
ri.

3.3 Learning in the Collaborative Filtering Models

Applying the CD learning procedure described in Section 2.3 to the collaborative �ltering model is rather straight-
forward. Since there is only one training point for each of the N user speci�c models, a single chain of length T is
run for each user model, starting from the lone training point. The parameters of the joint model are then updated
by averaging across all N users

∆wkij =
1

N

N∑
n=1

〈
vki hj

〉n
data
− 1

N

N∑
n=1

〈
vki hj

〉n
T

(5)

Application of the PCD learning procedure is not as straightforward. Since each user may rate a di�erent set of
items, we cannot persist a chain across di�erent users. This means we must retain the end state of each user's chain
after every iteration of the ascent.

3.4 Predicting User Ratings

In learning a collaborative �ltering model, our goal is to be able to accurately predict ratings for items not yet
purchased by a user. More formally, we want to predict the (expected) rating E[vs] of some unrated item s ∈
{1, ...,M} for user n. The expected rating is E[vs] =

∑K
k=1 k ·P θ(vks |Vn), where Vn is an mn×K matrix containing

the known ratings of user n and where the predictive distribution is

P θ(vks |Vn) ∝
∑

h1,..,hNh

exp
(
−Eθ(vks , VnH)

)
∝ exp(vks b

k
s)

Nh∏
j=1

{
1 + exp

(
mn∑
i=1

K∑
l=1

wlijv
l
i + vksw

k
sj + bj

)}

The predictive distribution can be written in this form because the summations over m, K and Nh in 4 are
interchangeable and because the factorization of the RBM model allows us to interchange the sum and product
when marginalizing out over all H. The expectation is then computed by normalizing over all K possible ratings.

4 Experimental Evaluation

Experimental evaluation of the CD and PCD learning procedures were performed using the Net�ix data set. In
particular, these procedures were used to train both the collaborative �ltering (CF) model presented in Section
3.1 and the conditional (CCF) model presented in Section 3.2. As with the Net�ix prize challenge, performance
was evaluated using the root mean squared error (RMSE) computed on the test/validation set. In addition to the
RMSE, the time performance of each learning procedure was assessed by recording the di�erence between the start
and end time of each learning epoch, where a learning epoch is de�ned to be the amount of time needed to complete
a pass through the entire data set (i.e. all N users).

4.1 Net�ix Data Set

The Net�ix prize data set contains ratings from over 480,000 Net�ix users on nearly 18,000 movies.The Net�ix data
set comes as a set of text �les (one for each movie) of the ratings made by each customer. The information in these
ratings �les is organized one customer per line, with each line containing a customer ID, rating, and date of the

5

CF Model CCF Model

η λ εinit εfinal Tinit Tfinal η λ εinit εfinal Tinit Tfinal
CD 0.05 1e-4 0.1 0.01 1 7 0.1 1e-4 0.1 0.1 1 7
PCD 0.05 1e-4 0.1 0.01 1 3 0.05 1e-4 0.3 0.2 1 3

Table 1: Experimental Parameters

rating. To get this data into a more manageable format (and one usable by Matlab) some Java code was written
to randomly select a subset of the ratings of N unique users on M of the movies. Throughout these experiments,
N = 50, 000, M = 1000 and further pre-screening was performed to ensure that each of the N users rated at least
10 movies. Note that this was done to allow us to establish a baseline prediction as the average across the ratings
made by a user (see following section for details). The resulting N ×M ratings matrix was further decomposed
into 90% training, 7.5% validation and 2.5% test sets.

4.2 Baseline Models

To understand the performance of the CD and PCD trained models in more absolute terms, we implemented three
additional baseline models. The �rst baseline is a Movie-Average model, where the predicted rating for user n on
movie s is simply the average over all known ratings for movie s. The second baseline is a User-Average model,
where the predicted rating for user n on movie s is simply the average over all ratings made by user n. The last
baseline is the basic matrix factorization model presented in [7]. In this model, predictions for user n on movie m
are made as ŷnm = uTnvm, where un and vm are C-dimensional vectors (C � N and C �M). The objective to be

minimized is f =
∑N
n=1

∑M
m=1 In,m(ŷnm − ynm) + λIn,m(‖un‖2 + ‖vm‖2), where In,m is an indicator function that

is 1 if user n rated movie m and 0 otherwise and where ynm is the actual rating if it was made. This objective is
minimized using stochastic gradient descent with a learning rate of 0.005 and regularization parameter λ = 0.01.

4.3 Algorithmic Details

The CF and CCF models were trained with either Nh = 100 or 200 hidden nodes. The wkij 's, bj 's and dij 's were

initialized by sampling from N (0, 0.01). The bki 's were initialized by taking the log of the base rate over all users -
i.e. bki = ln(# times movie i given rating k)/(# times movie i rated by all users). Both the CF and CCF models
were trained using the CD and PCD procedures for tTotal = 50 epochs. The joint gradient was updated in batches
of 1000 users, according to the following rule:

wkij ← wkij + inc(wkij , t)

inc(wkij , t) = η · inc(wkij , t− 1) + εt(∆w
k
ij − λwkij)

where t denotes the current epoch, ∆wkij is the gradient speci�ed in 5, η is a momentum parameter, εt is the

learning rate during epoch t, λ is a weight decay parameter and inc(wkij , t) denotes the increment to parameter

wkij at epoch t. In our experiments, ε was changed according to a geometric 'cooling' schedule of the form εt =

εinit(εfinal/εinit)
(t/tTotal) and T was increased linearly from Tinit to Tfinal. Table 1 contains the parameter values

used in all experiments.

4.4 Results

Figure 3 contains a plot of the performance of the CF and CCF models trained using both CD and PCD. In
particular, the plot shows the RMSE performance on the validation set over consecutive learning epochs. Despite
some noise in the �rst few epochs, the PCD procedure slightly outperforms the CD procedure on both the CF and
CCF models. In the CF models, PCD appears to converge faster than CD and in the CCF model, PCD approaches
a smaller RMSE. This suggests that the mixing rate of the MCMC approximation to the true likelihood function
might be slow. Despite slower convergence, the CCF model also slightly outperforms the CF models, indicating
that there is a bene�t in using implicit information when making predictions. Slower convergence in the CCF model

6

Figure 3: Performance of CD and PCD on the CF and CCF models on the validation data. Notice how CD and
PCD converge much faster on the CF model than on the CCF model. Despite some noise in the �rst few epochs,
PCD seems to outperform CD.

is contradictory to the results reported in [9]. However, in all cases the RMSE performance of the SVD model with
C = 50 components is far superior.

Figure 4a contains a plot of the performance of the CF and CCF models trained using CD and PCD on the test
set. Once again, the SVD model yields by far the most accurate predictions. While very slight, the PCD trained
models do appear to outperform the CD trained models. It is also worth noting that the CCF models with only
100 hidden nodes perform comparably with the CF models with 200 hidden nodes.

Figure 4b contains a plot of the time per training epoch for each of the di�erent models and learning procedures.
This plot is somewhat noisy because all training was performed on a shared server. Nonetheless, we can still see
the linear increase in training time corresponding to when the sequence lengths are incremented. It is also clear
that PCD is more e�cient than CD because it requires fewer Gibbs updates near the end of training. It is also
apparent that training the CCF models is more computationally intensive. This is not surprising because the
gradient ∆dij must be updated prior to updating those of the weights and biases. It also clear that while PCD is
more computationally e�cient than CD, training SVD is by far the most e�cient.

5 Conclusions

In this report, we investigated the use of an e�cient procedure, known as PCD, for learning in two types of
collaborative �ltering RBM models. On these type of models, PCD-based training outperformed the CD learning
procedure presented in [9] in terms of both the RMSE and total training time. However, no matter how much we
tuned the parameters of the CD and PCD learning procedures, we were never able to outperform an SVD model
as was reported in [9]. In addition, our tests indicate that while the RBM models can be tuned to approach the
performance of the SVD model on the validation set, the SVD model outperforms the RBM models by a wide
margin on the test set. Interestingly, the authors in [9] did not report RMSE performance on their test sets.

While the RBM models in [9] are an exciting and (fairly) new approach to collaborative �ltering, clear computa-
tional gains are needed in order for them to be usable in real world systems. For this reason, it would be interesting
to investigate the use of Welling's herding algorithm to the RBM collaborative �ltering models [11].

7

(a) Performance of models and algorithms on the test set. (b) Time performance of models and algorithms.

Figure 4: Performance of CD and PCD on CF and CCF models.

References

[1] David H. Ackley, Geo�rey E. Hinton, and Terrence J. Sejnowski. A learning algorithm for boltzmann machines.
pages 522�533, 1987.

[2] Yoshua Bengio and Olivier Delalleau. Justifying and generalizing contrastive divergence. Neural Comput.,
21(6):1601�1621, 2009.

[3] Alexander Felfernig, Gerhard Friedrich, and Lars Schmidt-Thieme. Recommender systems. IEEE INTELLI-

GENT SYSTEMS, 22(03).

[4] Ken Goldberg, Theresa Roeder, Dhruv Gupta, and Chris Perkins. Eigentaste: A constant time collaborative
�ltering algorithm, 2000.

[5] Geo�rey Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation,
14:2002, 2000.

[6] Thomas Hofmann. Latent semantic models for collaborative �ltering. ACM Trans. Inf. Syst., 22(1):89�115,
2004.

[7] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender systems.
Computer, 42(8):30�37, August 2009.

[8] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl. Grouplens: An open
architecture for collaborative �ltering of netnews. pages 175�186. ACM Press, 1994.

[9] Ruslan Salakhutdinov, Andriy Mnih, and Geo�rey Hinton. Restricted boltzmann machines for collaborative
�ltering. In ICML '07: Proceedings of the 24th international conference on Machine learning, pages 791�798,
New York, NY, USA, 2007. ACM.

[10] Tijmen Tieleman. Training restricted boltzmann machines using approximations to the likelihood gradient. In
ICML '08: Proceedings of the 25th international conference on Machine learning, pages 1064�1071, New York,
NY, USA, 2008. ACM.

[11] Max Welling. Herding dynamical weights to learn. In ICML '09: Proceedings of the 26th Annual International

Conference on Machine Learning, pages 1121�1128, New York, NY, USA, 2009. ACM.

8

