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Abstract

We introduce a new cluster-cumulant expansion
(CCE) based on the fixed points of iterative belief
propagation (IBP). This expansion is similar in
spirit to the loop-series (LS) recently introduced
in [1]. However, in contrast to the latter, the CCE
enjoys the following important qualities: 1) it is
defined for arbitrary state spaces 2) it is easily ex-
tended to fixed points of generalized belief prop-
agation (GBP), 3) disconnected groups of vari-
ables will not contribute to the CCE and 4) the
accuracy of the expansion empirically improves
upon that of the LS. The CCE is based on the
same Möbius transform as the Kikuchi approxi-
mation, but unlike GBP does not require storing
the beliefs of the GBP-clusters nor does it suffer
from convergence issues during belief updating.

1 Introduction

Graphical models play a central role in knowledge repre-
sentation and reasoning across a broad spectrum of scien-
tific disciplines, in which probabilistic queries, or inference
must be performed. A classic goal is to calculate the par-
tition function, or sum over all possible configurations of
the model; this task is central to many problems, such as
computing the probability of observed data (“probability
of evidence”), learning from data, and model comparisons.

Exact inference in these systems is typically NP-hard, mo-
tivating the need for efficient and accurate approxima-
tions. One of the most successful algorithms is itera-
tive belief propagation (IBP) [7], which approximates the
marginal probabilities of the distribution via an iterative,
message-passing procedure. IBP can also be interpreted
as a variational optimization, in which the messages and
their approximate marginals, or beliefs, minimize a partic-
ular free energy approximation called the Bethe approxi-
mation [11, 3]. IBP is approximate on graphs with cycles,
but is often empirically very accurate.

The wide success of IBP has also led to several techniques
for improving its estimate quality. Generalized belief prop-
agation (GBP) performs IBP-like updates on a set of re-
gions, consisting of collections of variables. However, re-
gion selection is often difficult, and can even lead to con-
vergence problems and degraded estimates [10]. An alter-
native is to use “series corrections” to the partition func-
tion such as the loop series and its generalizations, which
compute modifications to the estimate provided by a given
fixed point of IBP [1]. Such series expansions can be used
to provide “any-time” algorithms that initialize to the IBP
estimate and eventually converge to the exact solution.

In this paper we propose an alternative series correction
to IBP estimates based on a cluster cumulant expansion
(CCE). We show that the CCE has several benefits over the
loop series representation, including more accurate partial
estimates and more efficient aggregation of terms. We also
show that our CCE representation is closely related to GBP,
and that it can naturally be extended to GBP fixed points.
We show the effectiveness of our approach empirically on
several classes of graphical models.

2 Background

Let X = {Xi} be a collection of random variables, each
of which takes on values in a finite alphabet, Xi = xi ∈
X . For convenience, in the sequel we will not distinguish
between the random variable Xi and its instantiation xi.
Suppose that the distribution on X factors into a product of
real-valued, positive functions {ψf : f ∈ F}, each defined
over a subset f of the variables:

p(x) =
1

Zψ
ψ(x) =

1

Zψ

∏
f∈F

ψf (xf )

where xf = {xi | i ∈ f} represents the arguments of fac-
tor ψf , and Zψ is the partition function, Zψ =

∑
x ψ(x),

which serves to normalize the distribution. We denote by
Fi the set of factors that have xi in their argument. A factor
graph represents this factorization using a bipartite graph,



in which each factor (represented by a square) is connected
to the variables (circles) in its argument. See Figure 1-Left.

2.1 Iterative Belief Propagation

With each factor or variable node in the factor graph (FG)
we will associate a belief, denoted with bf (xf ) and bi(xi)
respectively. Iterative (or Loopy) Belief Propagation (IBP)
is a message passing algorithm on the factor graph that at-
tempts to make these beliefs consistent with each other. In
particular, at a fixed point of IBP we require∑

xf\xi

bf (xf ) = bi(xi) (1)

for every pair of factor and variables nodes that are con-
nected in the factor graph. IBP expresses these beliefs in
terms of a set of messages mfi:

bi(xi) ∝
∏
f∈Fi

mfi(xi)

bf (xf ) ∝ ψf (xf )
∏
i∈f

∏
g∈Fi\f

mgi(xi)
(2)

and updates the messages iterative to achieve Eqn. (1):

mnew
fi (xi)← δ(xi)m

old
fi (xi), δ(xi)

.
=

∑
xf\xi bf (xf )

bi(xi)

If the factor graph contains no cycles, at convergence the
beliefs exactly equal the marginal probabilities of p(x).

[11] showed that IBP fixed points correspond to stationary
points of the Bethe variational free energy F , giving an
approximation to the log-partition function:

log ẐBP = −F({ψf}, {bf , bi}) (3)

=
∑
f∈F

Ebf [logψf ] +
∑
f∈F

H(bf ) +
∑
i∈V

(1− |Fi|)H(bi)

where V is the set of variables, Ebf denotes the expectation
under bf and H(bf ) = −∑x b(xf ) log b(xf ) is its entropy.

We may view the IBP updates as a reparameterization of
the original distribution [9]. In particular, if we apply the
message update from factor f to variable i, according to
Eqn. (2) we change bi(xi)← bi(xi)δ(xi) and also a total of
|Fi|−1 factor beliefs bg(xg)← bg(xg)δ(xi) with g ∈ Fi\f
(see Figure 1-Left). As a result, the expression

1

Zb
b(x) =

1

Zb

∏
f∈F

bf (xf )
∏
i∈V

bi(xi)
1−|Fi| (4)

remains invariant under message updating, where Zb is the
partition function of the reparameterization b(x). More-
over, if we initialize all messages to 1, we immediately see
that Eqn. (4) is also equal to 1

Zψ
ψ(x).

Since ψ(x) and b(x) correspond to the same normalized
distribution p(x), they differ by a constant multiplicative
factor. Using (3) and noting that F({b}, {bf , bi}) = 0

shows that this factor is exactly ẐBP , and so

Zψ = ẐBP · Zb (5)

This shows that the true partition function Zψ can be com-
puted from IBP’s estimate ẐBP and the reparameteriza-
tion’s normalization constant, Zb.

2.2 Generalized Belief Propagation

Generalized BP, or GBP [11], generalizes (3) to include
higher-order interactions than the original factors of the
model. In GBP, one identifies a set of regions R, in which
each region α ∈ R is defined to be a subset of the factors,
α ⊆ F . Each region is also given a “counting number” cα,
and messages are passed between regions; a data structure
called a region graph is used to organize the message pass-
ing process. The GBP estimate of the partition function is

log ẐGBP =
∑
f∈F

Eb[logψf ] +
∑
α∈R

cαH(bα). (6)

BP on the factor graph constitutes a special case of GBP,
in which the regions R = F ∪ V and counting numbers
cf = 1 and ci = 1 − |Fi|. Regions form a partial order-
ing defined by their set inclusion; the ancestors of region
α are an(α) = {γ ∈ R|xα ⊂ xγ} and its descendants
are de(α) = {β ∈ R|xα ⊃ xβ}, where xα is the set of
variables in region α.

The counting numbers should satisfy some basic proper-
ties; in [11], a RG is considered valid or 1-balanced if∑

α∈R(f)

cα = 1 ∀ f
∑

α∈R(i)

cα = 1 ∀ i

where R(f), R(i) are those regions that contain factor f
and variable i, respectively.

Validity can be ensured by assigning each factor f to a sin-
gle outer region, setting cα = 1 for outer regions (i.e. re-
gions with no parents) and recursively for inner regions as:

cα = 1−
∑

β∈an(α)

cβ . (7)

The GBP message updates can again be interpreted as repa-
rameterization updates on the region graph. Any two re-
gions that are connected through a directed edge will ex-
change messages from parent to child region. We write the
beliefs in terms of the potentials and messages to α and its
descendants, ∆α = α ∪ de(α),

bα(xα) =
1

Zα

∏
f∈α

ψf (xf )
∏

γ∈{an(∆α)\∆α}
β∈∆α

mγβ(xβ)
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Figure 1: Left: A reparameterization update on a factor graph. Middle: A region graph GBP reparameterization update. Right: Factor
subgraph Gα corresponding to a cluster-cumulant.

and write a fixed-point message update as,

mnew
αβ (xβ)← δ(xβ)mold

αβ(xβ) =

∑
xα\xβ bα(xα)

bβ(xβ)
mold
αβ(xβ)

In words, to compute the belief at region α we collect mes-
sages from all regions that are either ancestors or ancestors
of descendants of that region, and that flow into α or its
descendants. Those messages that originate in α or its de-
scendants are not used.

It is now not difficult to see that these updates constitute a
reparameterization. Namely, if we update a message mαβ ,
the update factor δ is multiplied into the expressions for bβ
and all its ancestors, except bα and all its ancestors. Using
the expression for the counting numbers (7) we thus see
that we accumulate a total number of terms,

ctotal = [cβ +
∑

γ∈an(β)

cγ ]− [cα +
∑

δ∈an(α)

cδ] = 0

where we used that cβ = 1 −∑γ′∈an(β) cγ′ and similarly
for cα. This is illustrated in Figure 1-Middle.

As a result, the following expression will stay invariant un-
der the GBP updates:

1

Zψ

∏
f

ψf (xf ) =
1

Zb

∏
α

bα(xα)cα (8)

We can now use similar arguments as in Section 2.1 to show
that Zψ = ẐGBP · Zb again holds.

2.3 The Loop Series Expansion

The loop series [1, 8, 2] expresses Zb as a finite series ex-
pansion of terms related to the generalized loops of the
graph. Starting from Eqn. (4) we rewrite the terms:

bf (xf )∏
i∈f bi(xi)

= 1 +
bf (xf )−∏i∈f bi(xi)∏

i∈f bi(xi)
= 1 + Uf (xf )

where Uf is like a covariance in that it measures depen-
dence among the variables xi, i ∈ f . We can then write

Zb = Eb̃
[ ∏
f∈F

(1 + Uf )
]

where b̃(x) =
∏
i

bi(xi).

Expanding the product gives one term for each element in
the power set of F . If we expect the individual terms Uf to
be small, it makes sense to organize this series (for exam-
ple) in order of increasing number of Uf terms, and trun-
cate it once some computational limit is reached. Each term
corresponds to a subset α ⊆ F , and thus to a subgraph of
the factor graph. One can show that if this subgraph con-
tains any factor f that is not part of a loop (a.k.a. part of a
dangling tree), then the corresponding term will be zero.

To make the connection with the formulation of [1], we
must assume a binary alphabet xi ∈ (0, 1). Following [8]
we can re-express,

bf (xf )−∏i∈Vf bi(xi)∏
i∈Vf bi(xi)

=
∑

v⊆Vf ,|v|≥2

βv
∏
i∈v

(xi − E[xi])

βv =
E[
∏
i∈v(xi − E[xi])∏
j∈v V(xj)

(9)

where V(x) denotes the variance of x. In the process we
have created even more terms than the powerset of all fac-
tors because each factor itself is now a sum over all its sub-
sets of variables with cardinality larger than one. The total
set of terms is in one-to-one correspondence with all the
“generalized loops” of the factor graph (graphs where ev-
ery variable and factor node have degree at least two). The
advantage for the binary case is that the final expansion
can now be written in terms of expectations of the form
E[(xi − E[xi])

d] which admit closed form expressions in
terms of the beliefs bi obtained from IBP at its fixed point.
We refer to [1, 8] for further details.

3 The Cluster-Cumulant Expansion

We now develop an alternative expansion of the log-
partition function which we call the cluster-cumulant ex-
pansion (CCE). As with the loop series, we begin analysis
at a fixed point of IBP; we will later relate our expansion to
GBP and extend its definition to include GBP fixed points.

The CCE is defined over an arbitrary collection of sub-
sets of factors which we will denote with α. We define



a partial ordering on this set through subset inclusion, i.e.
α ≤ β iff α ⊆ β and α < β iff α ⊂ β. We will de-
note this poset with Ω. We also define a factor subgraph,
Gα = {i, f |i ∈ Vα, f ∈ α, α ∈ Ω} where Vα corresponds
to the set for variables that occur in the arguments of the
factors f ∈ α. An example of such a factor subgraph is
provided in Figure 1-Right. Finally we will define the par-
tial probability distribution over this factor subgraph as Pα
and the corresponding partial log partition function, logZα
as its log normalization constant:

Pα(xα) =
1

Zα

∏
i∈Vα

bi(xi)
∏
f∈α

bf (xf )∏
i∈Vf bi(xi)

(10)

logZα = log
∑
xα

∏
i∈Vα

bi(xi)
∏
f∈α

bf (xf )∏
i∈Vf bi(xi)

(11)

We first observe that if we choose α = F (the set of all fac-
tors) then logZF is the exact log partition function logZb.
We now show that logZα = 0 when the corresponding
factor subgraph Gα is a tree:

THEOREM 1. If the factor subgraph Gα is singly con-
nected, then logZα = 0.

Proof. When Gα is a tree, the expression (10) represents
the exact joint probability distribution expressed in terms
of its marginals with Zα = 1. Thus the result follows.

As a corollary we observe that logZα vanishes if α consists
of a single factor f . The theorem also allows us to remove
all “dangling trees” from any factor subgraph by marginal-
izing out the variables that correspond to the dangling tree.
We will thus define the “core” of a factor subgraph as the
part of the factor subgraph that remains after all dangling
trees have been removed (see also [2]).

We are now ready to define the cluster-cumulants (CCs).
The idea is to decompose each partial log partition function
as a sum of cluster-cumulant contributions from clusters in
the same or lower levels of the partially ordered set α ∈
Ω. In this manner, we expect that the lowest order CCs
generate the largest contribution and that higher order CCs
subsequently represent increasingly small corrections. The
definition of the CCs is provided by the expression [5, 4]

logZα =
∑
β≤α

Cβ (12)

This relation can be inverted using a Möbius transform,

Cα =
∑
β≤α

µβ,α logZβ (13)

where we define the Möbius numbers as,

µα,α = 1 and µγ,α = −
∑

β:γ<β≤α

µβ,α if γ < α.

Figure 2: A poset for a pairwise MRF on a 1×3 grid. Truncating
this poset at level 1 would include clusters over the faces of the
grid. Truncating at level 2 would add clusters α2,1 and α2,2.

To approximate logZ ≈ logZ` we truncate the cumulant
series by only including clusters α ∈ Ω` up to some level `
in the poset:

logZ` =
∑
α∈Ω`

Cα =
∑
α∈Ω`

∑
β≤α

µβ,α logZβ (14)

=
∑
β∈Ω`

∑
α∈Ω`

µβ,αI[β ≤ α] logZβ
.
=
∑
β∈Ω`

κβ logZβ

where I[·] is the indicator function. Moreover, κβ
.
=∑

α∈Ω`
µβ,αI[β ≤ α] can be computed recursively as

κβ = 1−
∑

α∈an(β)

κα (15)

with an(β) the ancestors of cluster β in the Hasse dia-
gram corresponding to the poset and with κα = 1 for
the clusters at the highest level of Ω` (i.e. the clusters
with no parents) [6]. It is important to realize that this
truncation is not equivalent to simply including all partial
log partitions from the the highest level in the poset, i.e.
logZ` =

∑
α∈Ω`

Cα 6=
∑
α∈Ω`

logZα.

Figure 2 illustrates the computation of logZ` on a sim-
ple pairwise MRF. On this 1 × 3 grid, the approximation
truncated at level 2 is logZ2 = logZα2,1

+ logZα2,2
−

logZα1,2 . The computation of each partial log partition
function requires exact inference on the partial factor sub-
graph. Thus, the time complexity for an approximation in-
cluding c clusters isO(c|V | exp(w)), wherew is the largest
induced width of the c clusters. However, the space com-
plexity of the truncated approximation is O(|V | exp(w))
since we need only retain logZα for each cluster.

This expansion is similar to the expansion of the free en-
ergy (or the entropy) in the cluster variation method of GBP
(see Section 2.2). However, there clusters serve as regions
between which messages are exchanged during the execu-
tion of GBP. In contrast, in this paper CCs are calculated
after IBP has converged in order to compute corrections.

The cumulant definition in Eqn. (13) immediately shows
that cumulants of singly connected subgraphs vanish:



THEOREM 2. If the factor subgraph Gα is singly con-
nected, then the cluster-cumulant satisfies Cα = 0.

Proof. From Eqn. (13) we see that a cumulant can be writ-
ten as a linear combination of logZα and logZβ , β < α.
Using Theorem 1 together with the facts that every sub-
graph of a tree is a smaller tree (or a forest of trees) and
that at the lowest level of the poset we have Cα = logZα,
the result follows by induction.

Unlike the terms in the loop series [1] (see Section
2.3), cluster-cumulants corresponding to disconnected sub-
graphs also vanish, even if the disconnected components
are not singly connected.

THEOREM 3. If the factor subgraph Gα is disconnected,
then the cluster-cumulant satisfies Cα = 0.

Proof. If the graph Gα is disconnected, its probability Pα
factorizes: Pα = PαAPαB . Then, the partial partition func-
tion decomposes as logZα = logZαA + logZαB which
by Eqn. (12) we rewrite as logZα =

∑
βA≤αA CβA +∑

βB≤αB CβB . Again by Eqn. (12) we have

Cα = logZα −
∑
β<α

Cβ

=
∑

βA≤αA

CβA +
∑

βB≤αB

CβB −
∑
β<α

Cβ .

Clusters β < α in the poset fall into one of three categories:
either Cβ ≤ CαA , or Cβ ≤ CαB , or [(Cβ > CαA)∧(Cβ >
CαB )∧(Cβ < Cα)]. We now proceed by induction. Cumu-
lants in the first two categories will cancel in the expression
for Cα. Sufficiently small clusters will have no cumulants
in the third category, and so must be zero. For larger clus-
ters, cumulants in the third category correspond to smaller
clusters that must also be disconnected, which by the in-
ductive argument must vanish. The result follows.

This property is special to the cumulant expansion and
holds even though the partial log-partition function logZα
for the disconnected region does not vanish. Apart from
reducing the number of terms that must be considered, this
property also suggests (by continuity of the cumulants as
a function of their factor parameters) that cumulants with
nearly-independent components must also be small. Thus,
we expect significant contributions from tight, highly cor-
related sets of variables and factors, but small contributions
from clusters with components that are almost independent.

To emphasize this point, consider a cluster-cumulant cor-
responding to a subgraph Gα that has one uniform factor
ψf (xf ) = 1. Moreover, assume that the cluster α̃ given by
removing this factor from α is also in the poset. This cre-
ates a situation where cluster α is ranked higher in the poset
than α̃, i.e., α > α̃, yet their partial partition functions must
be the same: logZα = logZα̃. In this case, Cα = 0:

THEOREM 4. Consider a poset Ω that includes a factor
f with unit potential ψf (xf ) = 1, and a cluster α that
contains factor f . Assume that there is also a cluster α̃ < α
containing the same factors as α except f , i.e. α̃ = α\f .
Then, Cα = 0.

Proof. For both clusters {α, α̃|α > α̃} we must have
the same partial partition function, logZα = logZα̃.
Hence, from Eqn. (12) we have

∑
β≤α Cβ =

∑
β̃≤α̃ Cβ̃ .

Since α > α̃ it follows that
∑
β≤α Cβ =

∑
β̃≤α̃ Cβ̃ +∑

γ>α̃,γ≤α Cγ . However, since α̃ is defined to have exactly
one factor fewer than α we have that

∑
γ>α̃,γ≤α Cγ = Cα.

Combining these expressions we have Cα = 0.

The significance of Theorem 4 is illustrated by imagining a
situation where ψf (xf ) ≈ 1. By the continuity argument,
we expect Cα ≈ 0 if the cluster α̃ with factor f removed
is in the poset. Hence, a cluster-cumulant will only signif-
icantly differ from zero if it introduces new dependencies
that were not already captured by lower order cumulants.
This result strengthens the interpretation of CCE as an ex-
pansion in terms of orders of statistical dependency.

These considerations suggest a way to build posets that are
likely to deliver good truncated series approximations of
the log-partition function. We first choose a collection of
clusters which may be overlapping, but none are a subset
of any other cluster. These clusters should be chosen so
that 1) they are not disconnected and 2) they have no dan-
gling trees. Moreover, tightly coupled clusters with strong
interdependencies are preferred over ones with weak de-
pendence. We then generate all intersections, intersections
of intersections, etc., to construct our poset. Finally we
compute their partial log partition functions and combine
them using Eqn. (14).

4 CCE for Region Graphs

We now extend the cluster-cumulant expansion to region
graphs; see Section 2.2 and [11] for background on region
graphs. The CCE will be build on top of an existing region
graph. We will call the existing region graph “calibrated”
(abbreviated CRG) if the GBP fixed point equations have
converged.1 We will add new “uncalibrated” regions to the
region graph during the expansion (see Figure 3-Left). Any
new region will become a parent of all the existing regions
that it contains. We then define the region subgraph Gα =
G∆α

to be the collection of calibrated regions and parent-
child relations restricted to α and its descendants. Note that
Gα includes only regions in the calibrated part of the region
subgraph, i.e., below the dashed line in Figure 3-Left.

1We only consider CCEs on calibrated region graphs; although
an expansion can be established for uncalibrated RGs, Theorem 2
will not hold (increasing the number of non-zero cumulants) and
terms may not fall off quickly, leading to poor approximations.
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Figure 3: Left: Cluster-cumulant extension of the calibrated region graph. Middle: A tree-structured RG for which logZα = 0.
Right: Illustration of a disconnected RG for which Cα = 0.

We define counting numbers cαβ for regions β in Gα by

cαβ = 1−
∑

γ∈(Gα∩an(β))

cαγ

Note that a counting number cαβ can vanish for some re-
gions in Gα even though their counting number cβ in the
original region graph did not vanish. Regions with cαβ = 0
will not contribute to logZα and can be excluded fromGα.

The partial log-partition function for this region is,

logZα = log
∑
xα

∏
β⊆α

bβ(xβ)c
α
β (16)

To generate cumulants we again use Eqn. (13). The trun-
cated cumulant series is the sum of these cumulants up to
some level in the poset. More convieniently, we can in-
stead use Eqn. (14) to express the series in terms of partial
log partition functions. Note that this will require counting
numbers κα that should not be confused with the count-
ing numbers cα above. In particular, the cα are computed
strictly in terms of the calibrated part of the region graph
(e.g., the regions right below the dashed line in Figure 3-
Left have cα = 1), while the κα are computed strictly in
terms of the cluster-cumulants (e.g., the regions at the high-
est level in the extended region graph have κα = 1).

As with the IBP expansion, logZα vanishes for a region
subgraph Gα that is singly connected (after only regions
with cαβ 6= 0 have been retained):

THEOREM 5. If a region subgraph Gα consisting of re-
gions in the CRG that are descendants of α and that
have counting numbers cαβ 6= 0 is singly connected, then
the partial log partition function and the cumulant satisfy
logZα = 0, Cα = 0.

Proof. Since the marginals on Gα are calibrated (due to
the reparameterization property of GBP) and because Gα
is singly connected, we have Zα = 1. Since accord-
ing to Eqn. (13) cumulants are linear combinations of log-
partition functions over subsets and since all subsets must
also be singly connected (or disconnected), the cumulant
for a singly connected region must also vanish.

This idea is illustrated in Figure 3-Middle. More generally,
for any region subgraph we can remove “dangling trees” for
the purpose of computing the CCE. (Note that this removal
may change the counting numbers of regions connecting
the core to the dangling trees.) To see this, follow an elim-
ination order from the tree’s leaf regions to the core. Since
it is just message passing on the (hyper) tree and since the
tree was already at a fixed point of GBP, the marginaliza-
tion result will be equivalent to removing those regions.

Analogous to the factor graph case, cluster-cumulants de-
fined on a region subgraph with two or more disconnected
components vanish. The proof is identical to the one given
for Theorem 3, and so we simply state the result:

THEOREM 6. If a region subgraph Gα consisting of re-
gions in the CRG that are descendants of α and that have
counting numbers cαβ 6= 0 is disconnected, then the cluster-
cumulant satisfies Cα = 0.

This is illustrated in Figure 3-Right. Note again that the
partial log partition function may not vanish; rather, it will
equal the sum of two (or more) terms whose contributions
are already included in the lower order cumulants.

In building our CCE, it is clear that we should avoid CCs
that correspond to either disconnected or singly connected
region subgraphs. (However, if we happen to include them,
no harm is done to the approximation; their contribution
will be zero). More generally, Theorem 4 remains valid for
region graphs, suggesting to define CCs over tightly con-
nected groups of regions that are expected to exhibit strong
dependencies beyond what are already modeled by the cal-
ibrated region graph. This still leaves considerable freedom
to design a good CCE. The experiments in Section 5 will
provide further guidance in his respect.

We end this section with a different perspective of what is
accomplished with the CCE. Starting with Eqn. (5) we can
write

logZψ = log ẐBP + logZb (17)

= −
∑

α∈Rcalibrated

cαFα −
∑

α′∈Runcalibrated

κα′Fα′



where Rcalibrated and Runcalibrated are calibrated and uncali-
brated regions and Fα = − logZα. The first term is the
standard decomposition of the variational free energy for
region graphs (see e.g. [11]) and the second term is the
cluster cumulant expansion. This expression highlights the
fact that CCE can be considered a correction to the varia-
tional free energy. Moreover, it suggests a procedure where
increasingly many regions are moved from the uncalibrated
part of the region graph to the calibrated part of the region
graph. We leave exploration of these ideas for the future.

5 Experiments

We conducted a variety of experiments to study the CCE.
Since the CCE is defined on a collection of clusters, we first
describe the cluster choices used in our experiments. This
description primarily refers to clusters that are sets of fac-
tors, i.e., for CCE on a factor graph. CCE on a region graph
considers clusters that are sets of calibrated regions. In the
sequel a k-cluster is a collection of k factors (or regions).

We considered two different collections of clusters in our
experiments. We first considered the poset Ωall contain-
ing all pairs of factors, all triplets of factors, and so forth.
Enumerating factors in this manner quickly becomes un-
manageable, so the expansion must be truncated. We will
use Ωlall to denote truncating the poset at level l, where for
example Ω4

all denotes the series truncated after all quintu-
plets of factors have been included.

The second collection of factors considered come from the
Truncated Loop Series (TLS) algorithm of [2]. The TLS
algorithm finds a subset of all generalized loops in a factor
graph. It does so by first finding a set of S simple loops
(i.e., cycles in the factor graph with degree 2) and then
merges these simple loops to create a set of generalized
loops (i.e., cycles with degree ≥ 2). In the TLS algorithm,
a generalized loop is formed from two simple loops l and
l′ by finding a path in the factor graph from some factor or
variable in l to some factor or variable in l′. Since many
paths may connect two simple loops, the set of generalized
loops is restricted to paths of at most length M .

The authors of [2] provide code that enumerates a set of
generalized loops l1,...,lN and computes the LS approxi-
mation to logZ after every loop. In [2], the set of loops
are placed in descending order by the magnitude of their
contributions, |Ul| (see 2.3 for details). To make the TLS
algorithm an “anytime” algorithm, we do not post-process
the set of loops and instead report the LS approximation on
the order in which the loops are discovered. A sequence
α1,...,αN of clusters can be constructed from a sequence of
loops l1, .., lN , where αi is the set of factors in generalized
loop li 2. In the experiments that follow ’LS (TLS)’ denotes

2Since many generalized loops are defined over the same set
of factors, we consider only the unique sets of factors.

the Loop Series approximation on the (unsorted) sequence
of loops from the TLS algorithm and ’CCE (TLS)’ is the
CC approximation on the unsorted sequence of loops.

When adding clusters to the CCE, it is important to note
that the collection of clusters may become imbalanced in
that the approximation in Eqn. (14) does not include all
intersections (and intersections of intersections etc.) of all
clusters, which leads to over-counting in the CCE. While
adding clusters bottom up along the poset Ωall guarantees a
balanced CCE, this is not always true for the TLS sequence
leading to suboptimal results. We thus emphasize that we
include CCE (TLS) results for the sake of comparison, but
that it is not the expansion that we recommend for the CCE.

We ran experiments on synthetic Markov Network (MN)
instances as well as benchmark instances from the UAI-
2008 solver competition. In all experiments, we take the
absolute difference of true and approximate log-partition
functions | logZ− log Ẑ| as our error measure. We stop BP
and GBP when L∞(bp(xc), bc(xc)) < 1e−8, where bc(xc)
is the belief at a child region c, bp(xc) is the marginal belief
of parent region p on variables xc and L∞ is the maximum
absolute difference between the two beliefs.

5.1 Grids

We first tested pairwise MNs defined on 10×10 grids. Each
grid instance has unary potentials of the form fi(xi) =
[exp(hi); exp(−hi)] and pairwise potentials of the form:

fij(xi, xj) =

[
exp(wij) exp(−wij)

exp(−wij) exp(wij)

]
The values of hi and wij were drawn from N (0, σ2

i ) and
N (0, σ2

ij) distributions, respectively. To study the behav-
ior of the CCE at various interaction strengths, we fixed
σi = 0.1 and varied σij from 0.1 to 1. Reported errors are
averages across 25 instances at each setting, and error bars
indicate the standard error.

Figure 4 compares the different series approximations on
grids. Following [2], the TLS algorithm was run on the
10× 10 grid instances with S = 1000 and M = 10.

’CCE (BP)’ is the CC approximation given a sequence of
terms efficiently enumerated in Ω15

all. All pairs and triplets
of factors on a pairwise grid have zero contribution and can
be ignored. The only 4-clusters with non-zero contribution
are the 81 faces of the 10×10 grid. To fill out the remaining
levels of Ω15

all, we enumerate pairs, triplets and quadruplets
of connected faces (sharing a vertex or edge), since the CC
for two disconnected faces in the grid is zero.

’CCE (GBP)’ is the CCE on a region graph. GBP was run
on a region graph with outer regions equal to the faces of
the grid. In this case, all pairs and triplets of faces give zero
contributions and can be ignored. Each 3 × 3 subgraph in
the grid is comprised of 4 faces forming a cycle. We take all
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Figure 4: Left: Comparison of the 4 series approximations on 10× 10 grids at a variety of interaction strengths.
Right: ErrorZ versus the number of terms in each approximation, for σij = 0.6 .
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Figure 5: Left: Comparison of the 4 series approximations on complete MNs of 15 variables at different coupling levels.
Right: ErrorZ as a function of the number of terms in each series.

64 of these to be the clusters in the ’CCE (GBP)’ approxi-
mation. Importantly, the intersection of any two such clus-
ters will be a cluster on either a disconnected or acyclic sub-
graph (having a zero contribution) implying that the whole
collection of clusters remains balanced.

Figure 4-Left compares the series approximations at a vari-
ety of coupling levels. The error reported is w.r.t. the final
logZ approximation of each series. All the approximations
offer a substantial error reduction over the Bethe approxi-
mation for instances with weak interactions. As interac-
tion strength is increased, the relative improvement of each
series declines. At the strongest coupling level, the error
in the LS approaches the Bethe approximation error, while
CCE remains an order of magnitude better.

Figure 4-Right shows a trace of the error as a function of the
number of terms included. Each LS term can be computed
very efficiently for binary MNs, while each CCE term re-
quires inference on a set of factors (or regions). Thus, com-
paring the series on the the number of terms may seem to
unfairly favor the CC approximations. However, the LS re-

quires enumerating generalized loops in the MN which is
more expensive than enumerating clusters.

5.2 Complete Graphs

We also experimented on pairwise MNs over a complete
graph of 15 variables. Here ’CCE (BP)’ is the CC approx-
imation given an efficient enumeration of terms in Ω14

all.
Since all pairs of factors are acyclic (and have zero con-
tribution), we begin by considering all cycles of length 3,
which is equivalent to all embedded K3 subgraphs. We
then proceed with adding all K4, all K5 and finally all K6

subgraphs to the CCE. Note that this enumeration is effi-
cient in that it skips certain contributions, such as cycles
over 4 variables because their contribution will be included
when we add the corresponding K4 subgraph.

’CCE (GBP)’ enumerates in a similar fashion. GBP is run
on a region graph formed using the “star” construction –
outer regions equal to all cycles of length 3 passing through
vertex 0. We then enumerate all complete graphs K4, K5

and K6 containing vertex 0. The set of K4 containing ver-
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Figure 6: Scatter plot of ErrorZ for the LS and CC approxima-
tions versus error in the Bethe approximation. Points below the
line are improvements upon IBP.

tex 0 is only a subset of all the K4’s embedded in the MN.
However, enumerating embedded complete graphs in this
fashion ensures that the collection of clusters remains bal-
anced.

Figure 5 compares the four series approximations across a
variety of interaction strengths. In these experiments the
TLS algorithm was run with S = 5000 and M = 10. On
complete graphs, the CC and LS approximations behave
similarly when using terms from the TLS algorithm. The
CCE as described above is much more accurate. This is
because while the TLS algorithm enumerates> 10K loops,
the loops contain at most 5 factors while the CCE up to K6

covers 15 factors.

5.3 UAI-2008 Benchmarks

In addition to the synthetic instances, we evaluated each
of the series approximations on instances from the 2008-
UAI solver competition. We selected 12 bn2o instances and
27 promedas instances that were solvable by our Junction
Tree implementation. The promedas instances have a very
sparse graph structure and contain between 400-1000 fac-
tors. As a result, enumerating all clusters in Ωlall is costly
and yields few non-zero terms even for small l. Thus, for
the promedas instances we only compare the LS and CC
approximations on the loops found by the TLS algorithm.
Figure 6 shows the error of the CC and LS approximations
versus the Bethe approximation. Points below the diago-
nal line indicate improvement over the Bethe approxima-
tion. The TLS algorithm was run on all 27 instances with
S = 100 andM = 10. These results are consistent with [2]
in that if the TLS algorithm finds most of the generalized
loops in an instance, the error is reduced by several orders
of magnitude, while if a small set of all generalized loops
are found, the series approximations offer no improvement.

Unlike the promedas instances, the bn2o instances have
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Figure 7: Scatter plot of ErrorZ for each series approximation
versus error in the Bethe approximation. Points below the line are
improvements upon IBP.

densely connected graph structures and contain far fewer
factors. These instance are thus better suited to enumera-
tion along Ωall. Figure 7 compares the error of the 4 series
approximations to the error of the Bethe approximation.
The TLS algorithm was run with S = 10K and M = 10,
producing more than 10K generalized loops. ’CCE (BP)’
was run on the set of clusters in Ω4

all.

6 Conclusion
We have introduced a new cluster-cumulant expansion
based on the fixed points of either BP or GBP. The expan-
sion was inspired by the LS of [1] but has certain advan-
tages over the latter. First, terms corresponding to discon-
nected clusters vanish. More generally, only tightly cou-
pled groups of variables are expected to make significant
contributions, which can be used to significantly cut down
on the number clusters that need to be considered. Second,
while the LS was only developed for binary variables, the
CCE is defined on arbitrary alphabets. Third, the CCE has
a natural extension to GBP on region graphs. Finally, the
accuracy of the CCE expansion improves upon the LS.

The CCE represents a very natural extension of the Kikuchi
approximation as it is based on the same type of expan-
sion. But unlike GBP on a region graph, the CCE does not
suffer from convergence issues and does not require stor-
ing beliefs during message passing. This makes it a use-
ful “anytime” tool to improve results obtained form GBP.
It also suggests new algorithms that move regions from the
CCE to regions used in GBP. The question of which regions
should be included in the GBP + CCE approximation and
whether a region should be included in GBP or be handled
by the CCE are left for future investigation.
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